|
| 1 | +#include <torch/extension.h> |
| 2 | +#include <torch/script.h> |
| 3 | +#include <iostream> |
| 4 | +#include <string> |
| 5 | +#include <sstream> |
| 6 | +#include <NvInfer.h> |
| 7 | +#include <ATen/ATen.h> |
| 8 | +#include <ATen/cuda/CUDAEvent.h> |
| 9 | +#include <torch/torch.h> |
| 10 | +#include <cuda_runtime_api.h> |
| 11 | + |
| 12 | +using namespace nvinfer1; |
| 13 | + |
| 14 | +namespace torch2trt { |
| 15 | + |
| 16 | +class GroupNormPlugin : public IPluginV2 { |
| 17 | +private: |
| 18 | + // configured by class |
| 19 | + at::TensorOptions tensor_options; |
| 20 | + std::vector<int64_t> input_sizes; |
| 21 | + std::vector<int64_t> output_sizes; |
| 22 | + DataType dtype; |
| 23 | + |
| 24 | + // group norm parameters, configured by user |
| 25 | + int64_t num_groups; |
| 26 | + at::Tensor weight; |
| 27 | + at::Tensor bias; |
| 28 | + double eps; |
| 29 | + |
| 30 | + |
| 31 | +public: |
| 32 | + |
| 33 | + // create from arguments |
| 34 | + GroupNormPlugin(int64_t num_groups, at::Tensor weight, at::Tensor bias, double eps) : |
| 35 | + num_groups{num_groups}, weight{weight}, bias{bias}, eps{eps} |
| 36 | + {} |
| 37 | + |
| 38 | + GroupNormPlugin(const char *data, size_t length) : GroupNormPlugin(std::string(data, length)) {} |
| 39 | + |
| 40 | + GroupNormPlugin(const std::string &data){ |
| 41 | + deserializeFromString(data); |
| 42 | + } |
| 43 | + |
| 44 | + void deserializeFromString(const std::string &data) { |
| 45 | + std::istringstream data_stream(data); |
| 46 | + torch::serialize::InputArchive input_archive; |
| 47 | + input_archive.load_from(data_stream); |
| 48 | + { |
| 49 | + torch::IValue value; |
| 50 | + input_archive.read("num_groups", value); |
| 51 | +#ifdef USE_DEPRECATED_INTLIST |
| 52 | + num_groups = value.toIntListRef().vec(); |
| 53 | +#else |
| 54 | + num_groups = value.toInt(); |
| 55 | +#endif |
| 56 | + } |
| 57 | + { |
| 58 | + torch::IValue value; |
| 59 | + input_archive.read("weight", value); |
| 60 | + weight = value.toTensor(); |
| 61 | + } |
| 62 | + { |
| 63 | + torch::IValue value; |
| 64 | + input_archive.read("bias", value); |
| 65 | + bias = value.toTensor(); |
| 66 | + } |
| 67 | + |
| 68 | + { |
| 69 | + torch::IValue value; |
| 70 | + input_archive.read("eps", value); |
| 71 | +#ifdef USE_DEPRECATED_INTLIST |
| 72 | + eps = value.toDoubleListRef().vec(); |
| 73 | +#else |
| 74 | + eps = value.toDouble(); |
| 75 | +#endif |
| 76 | + } |
| 77 | + { |
| 78 | + torch::IValue value; |
| 79 | + input_archive.read("dtype", value); |
| 80 | + dtype = (DataType) value.toInt(); |
| 81 | + } |
| 82 | + { |
| 83 | + torch::IValue value; |
| 84 | + input_archive.read("input_sizes", value); |
| 85 | +#ifdef USE_DEPRECATED_INTLIST |
| 86 | + input_sizes = value.toIntListRef().vec(); |
| 87 | +#else |
| 88 | + input_sizes = value.toIntVector(); |
| 89 | +#endif |
| 90 | + } |
| 91 | + { |
| 92 | + torch::IValue value; |
| 93 | + input_archive.read("output_sizes", value); |
| 94 | +#ifdef USE_DEPRECATED_INTLIST |
| 95 | + output_sizes = value.toIntListRef().vec(); |
| 96 | +#else |
| 97 | + output_sizes = value.toIntVector(); |
| 98 | +#endif |
| 99 | + } |
| 100 | + } |
| 101 | + std::string serializeToString() const { |
| 102 | + torch::serialize::OutputArchive output_archive; |
| 103 | + output_archive.write("num_groups", torch::IValue(num_groups)); |
| 104 | + output_archive.write("weight", torch::IValue(weight)); |
| 105 | + output_archive.write("bias", torch::IValue(bias)); |
| 106 | + output_archive.write("eps", torch::IValue(eps)); |
| 107 | + output_archive.write("dtype", torch::IValue((int) dtype)); |
| 108 | + output_archive.write("input_sizes", torch::IValue(input_sizes)); |
| 109 | + output_archive.write("output_sizes", torch::IValue(output_sizes)); |
| 110 | + std::ostringstream data_str; |
| 111 | + output_archive.save_to(data_str); |
| 112 | + return data_str.str(); |
| 113 | + } |
| 114 | + |
| 115 | + const char* getPluginType() const override { |
| 116 | + return "group_norm"; |
| 117 | + }; |
| 118 | + |
| 119 | + const char* getPluginVersion() const override { |
| 120 | + return "1"; |
| 121 | + } |
| 122 | + |
| 123 | + int getNbOutputs() const override { |
| 124 | + return 1; |
| 125 | + } |
| 126 | + |
| 127 | + Dims getOutputDimensions(int index, const Dims* inputs, int nbInputDims) override { |
| 128 | + Dims dims; |
| 129 | + dims.nbDims = inputs->nbDims; |
| 130 | + |
| 131 | + for (int i = 0; i < inputs->nbDims; i++) { |
| 132 | + dims.d[i] = inputs->d[i]; |
| 133 | + } |
| 134 | + |
| 135 | + return dims; |
| 136 | + } |
| 137 | + |
| 138 | + bool supportsFormat(DataType type, PluginFormat format) const override { |
| 139 | + if (format != PluginFormat::kNCHW) { |
| 140 | + return false; |
| 141 | + } |
| 142 | + if (type == DataType::kINT32 || type == DataType::kINT8) { |
| 143 | + return false; |
| 144 | + } |
| 145 | + return true; |
| 146 | + } |
| 147 | + |
| 148 | + void configureWithFormat(const Dims* inputDims, int nbInputs, const Dims* outputDims, |
| 149 | + int nbOutputs, DataType type, PluginFormat format, int maxBatchSize) override { |
| 150 | + |
| 151 | + // set data type |
| 152 | + if (type == DataType::kFLOAT) { |
| 153 | + tensor_options = tensor_options.dtype(c10::kFloat); |
| 154 | + dtype = type; |
| 155 | + } else if (type == DataType::kHALF) { |
| 156 | + tensor_options = tensor_options.dtype(c10::kHalf); |
| 157 | + dtype = type; |
| 158 | + } |
| 159 | + |
| 160 | + // set input sizes |
| 161 | + input_sizes.resize(inputDims[0].nbDims); |
| 162 | + for (int i = 0; i < inputDims[0].nbDims; i++) { |
| 163 | + input_sizes[i] = inputDims[0].d[i]; |
| 164 | + } |
| 165 | + |
| 166 | + // set output sizes |
| 167 | + output_sizes.resize(outputDims[0].nbDims); |
| 168 | + for (int i = 0; i < outputDims[0].nbDims; i++) { |
| 169 | + output_sizes[i] = outputDims[0].d[i]; |
| 170 | + } |
| 171 | + } |
| 172 | + |
| 173 | + int initialize() override { |
| 174 | + // set device |
| 175 | + tensor_options = tensor_options.device(c10::kCUDA); |
| 176 | + |
| 177 | + // set data type |
| 178 | + if (dtype == DataType::kFLOAT) { |
| 179 | + tensor_options = tensor_options.dtype(c10::kFloat); |
| 180 | + } else if (dtype == DataType::kHALF) { |
| 181 | + tensor_options = tensor_options.dtype(c10::kHalf); |
| 182 | + } |
| 183 | + |
| 184 | + |
| 185 | + weight = weight.to(tensor_options); |
| 186 | + bias = bias.to(tensor_options); |
| 187 | + |
| 188 | + return 0; |
| 189 | + } |
| 190 | + |
| 191 | + void terminate() override {} |
| 192 | + |
| 193 | + size_t getWorkspaceSize(int maxBatchSize) const override { return 0; } |
| 194 | + |
| 195 | + int enqueue(int batchSize, const void* const* inputs, void** outputs, void* workspace, cudaStream_t stream) override { |
| 196 | + // get input / output dimensions |
| 197 | + std::vector<long> batch_input_sizes = input_sizes; |
| 198 | + std::vector<long> batch_output_sizes = output_sizes; |
| 199 | + batch_input_sizes.insert(batch_input_sizes.begin(), batchSize); |
| 200 | + batch_output_sizes.insert(batch_output_sizes.begin(), batchSize); |
| 201 | + |
| 202 | + // create tensor wrappers |
| 203 | + at::Tensor input = at::from_blob((void*) inputs[0], batch_input_sizes, [](void*){}, tensor_options); |
| 204 | + at::Tensor output = at::from_blob(outputs[0], batch_output_sizes, [](void*){}, tensor_options); |
| 205 | + |
| 206 | + // create new torch cuda stream |
| 207 | + at::cuda::CUDAStream torch_stream = at::cuda::getStreamFromPool(); |
| 208 | + at::cuda::CUDAStreamGuard torch_guard(torch_stream); |
| 209 | + |
| 210 | + // capture current work on tensorrt cuda stream |
| 211 | + cudaEvent_t event; |
| 212 | + cudaEventCreate(&event); |
| 213 | + cudaEventRecord(event, stream); |
| 214 | + |
| 215 | + // make torch cuda stream wait on tensorrt work |
| 216 | + cudaStreamWaitEvent(torch_stream.stream(), event, 0); |
| 217 | + |
| 218 | + |
| 219 | + |
| 220 | + // enqueue work |
| 221 | + // Group_norm function from PyTorch: https://pytorch.org/cppdocs/api/function_namespaceat_1a6bc1e9504ea440c6c96ff8a8b94333f2.html#exhale-function-namespaceat-1a6bc1e9504ea440c6c96ff8a8b94333f2 |
| 222 | + at::Tensor output_tmp = at::group_norm(input, num_groups, weight, bias, eps=eps); |
| 223 | + output.copy_(output_tmp); |
| 224 | + |
| 225 | + // capture event on enqueued stream |
| 226 | + cudaEvent_t torch_event; |
| 227 | + cudaEventCreate(&torch_event); |
| 228 | + cudaEventRecord(torch_event, torch_stream.stream()); |
| 229 | + cudaStreamWaitEvent(stream, torch_event, 0); |
| 230 | + |
| 231 | + cudaEventDestroy(event); |
| 232 | + cudaEventDestroy(torch_event); |
| 233 | + |
| 234 | + return 0; |
| 235 | + } |
| 236 | + |
| 237 | + |
| 238 | + size_t getSerializationSize() const override { |
| 239 | + return serializeToString().size(); |
| 240 | + } |
| 241 | + |
| 242 | + void serialize(void* buffer) const override { |
| 243 | + std::string data = serializeToString(); |
| 244 | + size_t size = getSerializationSize(); |
| 245 | + data.copy((char *) buffer, size); |
| 246 | + } |
| 247 | + |
| 248 | + void destroy() override {} |
| 249 | + |
| 250 | + IPluginV2* clone() const override { |
| 251 | + return new GroupNormPlugin(num_groups, weight, bias, eps); |
| 252 | + } |
| 253 | + |
| 254 | + void setPluginNamespace(const char* pluginNamespace) override {} |
| 255 | + |
| 256 | + const char *getPluginNamespace() const override { |
| 257 | + return "torch2trt"; |
| 258 | + } |
| 259 | + |
| 260 | +}; |
| 261 | + |
| 262 | +class GroupNormPluginCreator : public IPluginCreator { |
| 263 | +public: |
| 264 | + GroupNormPluginCreator() {} |
| 265 | + |
| 266 | + const char *getPluginNamespace() const override { |
| 267 | + return "torch2trt"; |
| 268 | + } |
| 269 | + |
| 270 | + const char *getPluginName() const override { |
| 271 | + return "group_norm"; |
| 272 | + } |
| 273 | + |
| 274 | + const char *getPluginVersion() const override { |
| 275 | + return "1"; |
| 276 | + } |
| 277 | + |
| 278 | + IPluginV2 *deserializePlugin(const char *name, const void *data, size_t length) override { |
| 279 | + return new GroupNormPlugin((const char*) data, length); |
| 280 | + } |
| 281 | + |
| 282 | + void setPluginNamespace(const char *N) override {} |
| 283 | + const PluginFieldCollection *getFieldNames() override { return nullptr; } |
| 284 | + |
| 285 | + IPluginV2 *createPlugin(const char *name, const PluginFieldCollection *fc) override { return nullptr; } |
| 286 | + |
| 287 | +}; |
| 288 | + |
| 289 | + |
| 290 | +REGISTER_TENSORRT_PLUGIN(GroupNormPluginCreator); |
| 291 | + |
| 292 | +} // namespace torch2trt |
| 293 | + |
| 294 | + |
| 295 | + |
| 296 | + |
0 commit comments