-
Notifications
You must be signed in to change notification settings - Fork 9
/
Copy pathmcVAE_4_test.py
executable file
·125 lines (103 loc) · 5.21 KB
/
mcVAE_4_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import os
import torch
import pandas as pd
import argparse
import utils.io.image as io_func
from utils.sitk_np import np_to_sitk
from torchvision.utils import save_image
import pdb
import datetime
from shutil import copyfile
from dataloader.MM_loader_4_test import MM_loader
from networks.net_cmr_mtdt import net_cmr_mtdt
from mcvae import pytorch_modules, utilities
from utils.trainer_regressor import save_output
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Test mcVAE/Deep Regressor')
parser.add_argument('--n_channels', default=2, type=int) # number of channels for MCVAE
parser.add_argument('--lat_dim', default=2048, type=int)
parser.add_argument('--lr', type=float, default=5e-4)
parser.add_argument('--epochs', default=2000, type=int)
parser.add_argument('--save_model', default=200, type=int) # save the model every x epochs
parser.add_argument('--batch_size', default=8, type=int)
parser.add_argument('--n_cpu', default=24, type=int)
parser.add_argument('--dir_dataset', type=str, default='../input_data/')
parser.add_argument('--dir_ids', type=str, default='./input_data/ids/non_stroke_MI_ids_mtdt.csv') # non_stroke_MI_ids_mtdt # ids_MI_4_test_mtdt
parser.add_argument('--sax_img_size', type=list, default=[128, 128, 15])
parser.add_argument('--fundus_img_size', type=int, default=128)
parser.add_argument('--num_mtdt', type=int, default=10)
parser.add_argument('--n_classes', type=int, default=2)
parser.add_argument('--ndf', type=int, default=128)
parser.add_argument('--dir_results', type=str, default='./results_test/')
parser.add_argument('--dir_weights_mcvae', type=str, default='./results/2020-05-10_19-44-26_automatic/')
parser.add_argument('--dir_weights_regressor', type=str, default='results_regressor/2020-05-12_00-28-28/')
parser.add_argument('--model_name', type=str, default='net_cmr_mtdt') # for deep regressor
args = parser.parse_args()
args.dir_weights_regressor = args.dir_weights_mcvae + args.dir_weights_regressor
# Multi-channel VAE config
init_dict = {
'n_channels': args.n_channels,
'lat_dim': args.lat_dim, # We fit args.lat_dim latent dimensions
'n_feats': {'fundus': [3, args.ndf, args.fundus_img_size],
'cmr': [args.sax_img_size[2], args.ndf, args.sax_img_size[0]]
},
'opt': args
}
print('\nTesting Mode. Loading IDs files \n')
# Reading the files that contains labels and names.
test_set = pd.read_csv(args.dir_ids, sep=',') # This is used to reconstructed both train and test set
test_loader = MM_loader(batch_size = args.batch_size,
fundus_img_size = args.fundus_img_size,
num_workers = args.n_cpu,
sax_img_size = args.sax_img_size,
shuffle = False,
dir_imgs = args.dir_dataset,
args = args,
ids_set = test_set
)
# Loading models
print('Loading mcVAE model ...')
# Creating model
model_MM = pytorch_modules.MultiChannelSparseVAE(**init_dict)
loaded_model = utilities.load_model(args.dir_weights_mcvae)
model_MM.load_state_dict(loaded_model['state_dict'])
print('Loading deep regressor model ...')
model_reg = globals()[args.model_name](args = args)
loaded_model = torch.load(os.path.join(args.dir_weights_regressor, args.model_name + '.tar'))
model_reg.load_state_dict(loaded_model['state_dict'])
model_reg = model_reg.cuda()
model_reg.eval()
print('Making predictions ...')
laten_vars_fundus = []
laten_vars_cmr = []
img_names_4_linear_reg = []
labels_4_linear_reg = []
if not os.path.exists(args.dir_results):
os.makedirs(args.dir_results)
all_preds = torch.FloatTensor().cuda()
image_names = []
for i, (fundus, sax, mtdt, img_names) in enumerate(test_loader):
image_names.extend(img_names)
fundus = fundus.cuda()
sax = sax.cuda()
mtdt = mtdt.cuda()
print('Generating CMR ...')
# Getting predictions
inputToLatent = model_MM.encode((fundus, sax))
latent_vars = model_MM.sample_from(inputToLatent)
predictions = model_MM.decode(latent_vars)
print('Estimating cardiac indices ...')
recons_cmr = predictions[0][1].loc
# recons_cmr = (recons_cmr - torch.min(recons_cmr))/(torch.max(recons_cmr) - torch.min(recons_cmr)) # Normalize between 0 and 1
preds = model_reg(recons_cmr, mtdt)
# print(preds.cpu().detach().numpy())
all_preds = torch.cat((all_preds, preds.data), 0)
# Saving the reconstructed CMR
# for d in range(len(img_names)):
# # Saving image result
# for idx in range(fundus.size(0)):
# name_cmr = img_names[idx].split('_')[0]
# io_func.write(np_to_sitk(predictions[0][1].loc.cpu().detach().numpy()[idx]), args.dir_results + 'reconstructed_' + name_cmr + '.vtk')
pred_file_name = args.dir_results + args.dir_ids.split('/')[-1][:-4] + '_preds.csv'
save_output(image_names, all_preds, args, save_file = pred_file_name)