-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathrandom.f90
133 lines (119 loc) · 2.99 KB
/
random.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
module random
use types, only: dp
use utils, only: stop_error
implicit none
private
public randn, rand_gamma
interface randn
module procedure randn_scalar
module procedure randn_vector
module procedure randn_matrix
module procedure randn_vector_n
end interface
interface rand_gamma
module procedure rand_gamma_scalar
module procedure rand_gamma_vector
module procedure rand_gamma_matrix
module procedure rand_gamma_vector_n
end interface
contains
subroutine randn_scalar(x)
! Returns a psuedorandom scalar drawn from the standard normal distribution.
!
! [1] Marsaglia, G., & Bray, T. A. (1964). A Convenient Method for Generating
! Normal Variables. SIAM Review, 6(3), 260–264.
real(dp), intent(out) :: x
logical, save :: first = .true.
real(dp), save :: u(2)
real(dp) :: r2
if (first) then
do
call random_number(u)
u = 2*u-1
r2 = sum(u**2)
if (r2 < 1 .and. r2 > 0) exit
end do
u = u * sqrt(-2*log(r2)/r2)
x = u(1)
else
x = u(2)
end if
first = .not. first
end subroutine
subroutine randn_vector_n(n, x)
integer, intent(in) :: n
real(dp), intent(out) :: x(n)
integer :: i
do i = 1, size(x)
call randn(x(i))
end do
end subroutine
subroutine randn_vector(x)
real(dp), intent(out) :: x(:)
call randn_vector_n(size(x), x)
end subroutine
subroutine randn_matrix(x)
real(dp), intent(out) :: x(:, :)
call randn_vector_n(size(x), x)
end subroutine
subroutine rand_gamma0(a, first, fn_val)
! Returns a psuedorandom scalar drawn from the gamma distribution.
!
! The shape parameter a >= 1.
!
! [1] Marsaglia, G., & Tsang, W. W. (2000). A Simple Method for Generating
! Gamma Variables. ACM Transactions on Mathematical Software (TOMS), 26(3),
! 363–372.
real(dp), intent(in) :: a
logical, intent(in) :: first
real(dp), intent(out) :: fn_val
real(dp), save :: c, d
real(dp) :: U, v, x
if (a < 1) call stop_error("Shape parameter must be >= 1")
if (first) then
d = a - 1._dp/3
c = 1/sqrt(9*d)
end if
do
do
call randn(x)
v = (1 + c*x)**3
if (v > 0) exit
end do
call random_number(U)
! Note: the number 0.0331 below is exact, see [1].
if (U < 1 - 0.0331_dp*x**4) then
fn_val = d*v
exit
else if (log(U) < x**2/2 + d*(1 - v + log(v))) then
fn_val = d*v
exit
end if
end do
end subroutine
subroutine rand_gamma_scalar(a, x)
real(dp), intent(in) :: a
real(dp), intent(out) :: x
call rand_gamma0(a, .true., x)
end subroutine
subroutine rand_gamma_vector_n(a, n, x)
real(dp), intent(in) :: a
integer, intent(in) :: n
real(dp), intent(out) :: x(n)
integer :: i
call rand_gamma0(a, .true., x(1))
do i = 2, size(x)
call rand_gamma0(a, .false., x(i))
end do
end subroutine
subroutine rand_gamma_vector(a, x)
real(dp), intent(in) :: a
real(dp), intent(out) :: x(:)
call rand_gamma_vector_n(a, size(x), x)
end subroutine
subroutine rand_gamma_matrix(a, x)
real(dp), intent(in) :: a
real(dp), intent(out) :: x(:, :)
call rand_gamma_vector_n(a, size(x), x)
end subroutine
end module