-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathAngularIntegration.py
291 lines (210 loc) · 8.96 KB
/
AngularIntegration.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
"""
Angular Integration Method
Given a center, integrate over phi and histogram values as a
function of radial distance from center.
"""
# Import numpy for fast array calculations & manipulation
import numpy as np
# class AngularIntegration
# One of the drawbacs is the radial array is always recreated. It
# should only be calculated when needed (be lazy).
#
# Flags to monitor how much the radial-center moves by should be used
# to trigger radial array calculation.
#
# This can be done without going to OO. However, these algorithms are
# very general, and one could image multiple integarators running for
# different area-detectors. In that case, having a class, each with
# its own internal data would be handy.
#
# Class AngularIntegrator
# self.center
# self.tollerance ---> use to define how far center has to move to
# trigger radial array calculation
# self.radialArray --> internal array of radii
# self.imageWidth, self.imageHeight --> any change should trigger
# radial array calculation
# self.1dhistogram ---> to be included when general 1D histogram
# class is defined
class AngularIntegrator:
"""
Class to perform angular integration of a 2D array (typically an image)
"""
def __init__(self, tollerance=1.0):
# How much must the center move to trigger a recalulation of
# the radial array
self.tollerance = tollerance
# Cache the x,y center values
self.__xCenterOld = None
self.__yCenterOld = None
# Cache the radial array
self.__radialArray = None
# Cache the maximum radial value
self.__radialMax = None
# create the radial axis for FAST calculation
# radialAxis = histaxis
def __createRadialArray(self, radialCenterX, radialCenterY,
imageWidth, imageHeight):
"""
Purpose: Fill a 2D array of radii using
(radialCenterX,radialCenterY) as the center
Parameters
----------
radialCenterX : x co-ordinate of center (column)
radialCenterY : y co-ordinate of center (row)
NB: This assumes the origin is at the bottom-left
imageWidth : Width of the image (number of columns)
imageHeight: Height of the image (number of rows)
Pixel position is evaulated at its center
Returns
-------
result: numpy.ndarray of the 2D array of radii
"""
# print "Making radial matrix...",
xRange = np.linspace(-radialCenterX + 0.5,
imageWidth - radialCenterX - 0.5,
imageWidth)
yRange = np.linspace(-radialCenterY+0.5,
imageHeight-radialCenterY-0.5,
imageHeight)
xCoords, yCoords = np.meshgrid(xRange, yRange)
self.__radial = np.sqrt(xCoords**2 + yCoords**2)
# update maximum radial value
self.__radialMax = self.__radial.max()
# print "Done"
def __recalculateRadialArray(self, xCenter, yCenter):
"""
Method to determine whether to recalculate the radial array
"""
# If xCenterOld and yCenterOld are not defined, calculate
# radial array
if (self.__xCenterOld is None) or (self.__yCenterOld is None):
self.__xCenterOld = xCenter
self.__yCenterOld = yCenter
return True
# Calculate how far center has moved
deltaX = xCenter - self.__xCenterOld
deltaY = yCenter - self.__yCenterOld
deltaR = np.sqrt(deltaX**2 + deltaY**2)
return True if deltaR > self.tollerance else False
def angularIntegration(self, image, xCenter, yCenter,
nbins=100, rStart=0.0, rEnd=None):
"""
Purpose: Integrate in phi about (xCenter, yCenter) histogramming
data as function of distance(radius) from (xCenter, yCenter)
Paramters
---------
image : 2D numpy array
Input data for integration
xCenter : float
x-position of center for angular integration
yCenter : float
y-position of center for angular integration
nBins : interger, optional, default: 100
Number of bins for output histogram.
rStart : float, optional, default: 0.0
Lower bound output histogram x-axis
rEnd : float, optional, default None
Upper bound output histogram x-axis
If no value is given, it will use the largest radii given the
image, xCenter, and yCenter
Returns
-------
tuple : (array of radial points, array of integrated value at r)
"""
# print "Starting angular integration calculation"
# Make Array of radii if needed
if self.__recalculateRadialArray(xCenter, yCenter) :
self.__createRadialArray(xCenter, yCenter,
image.shape[1], image.shape[0])
# If rEnd isn't defined, use largest value from radii array
if rEnd is None:
rEnd = self.__radialMax
# Make histogram of radii weighted by pixel intesity & return it
radialInteg, binEdges = \
np.histogram(self.__radial,
bins=nbins, range=(rStart, rEnd),
weights=image)
# Take center of binEdges to convert from histogram to X,Y
# plot
radialPoints = (binEdges + 0.5)[:-1]
# print "Finished angular integration calculation"
# Now return an array of X,Y points
return radialPoints, radialInteg
# def angularIntegration_FAST(self, image, xCenter, yCenter,
# nbins=100, rStart=0.0, rEnd=None):
# # Make Array of radii if needed
# if self.__recalculateRadialArray(xCenter, yCenter) :
# self.__createRadialArray(xCenter, yCenter,
# image.shape[1], image.shape[0])
# # If rEnd isn't defined, use largest value from radii array
# if rEnd is None:
# rEnd = self.__radialMax
## # Fill histogram
# # Loop over all rows
# for row in xrange(image.shape[0]) :
# # loop over all columns
# for column in xrange(image.shape[1]) :
# # get pixel at row,column
# pixel = image[row][column]
# get radius
# radius = self.__radial[row][column]
# get bin
# bin =
# AUX class to do histogram axis
#class histaxis:
# def __init__(self,low,high,nbin):
# self.low = low
# self.high = high
# self.nbin = nbin
# self.binsize = (high-low)/float(nbin+1)
# def bin(self,val):
# return int(math.floor((val-self.low)/self.binsize))
# Code to test AngularIntegration module
if __name__ == "__main__" :
def MakeImage(start, end, points) :
# Create test image - a sinc function, centered in the middle of
# the image
# Integrating in phi about center, the integral will become sin(x)
print "Creating test image",
axis_image = np.linspace(start,end,points)
axis_image_X, axis_image_Y = np.meshgrid(axis_image, axis_image)
axis_image_Radius = np.sqrt(axis_image_X**2 + axis_image_Y**2)
testImage = np.abs(np.sinc(axis_image_Radius))
print "Done"
return testImage
# Import matplotlib for drawing
import matplotlib.pyplot as plt
testImage = MakeImage(-5.0, 5.0, 1024)
# For sanity checking later, normalise testImage to 1.0
testImage /= testImage.sum()
print "Test Image Integral: ", testImage.sum()
# Instatiate the AngularIntegration class
pnCCDInteg = AngularIntegrator()
# Now do angular integration
print "Doing integration"
radialPoints, radialInteg = pnCCDInteg.angularIntegration(testImage,
512,512,500)
print "Sanity check => histogram integral: ", radialInteg.sum()
# Display images
print "Display images"
plt.figure(1)
plt.clf()
plt.subplot(221)
plt.imshow(testImage)
# ----> plot of radial slice
# plt.subplot(222)
# plt.plot(testImage[testImage.shape[1]/2,:])
# plot radial integral
plt.subplot(222)
plt.plot(radialPoints, radialInteg)
# Move half a pixel
# testImage2 = MakeImage(-4.5, 5.5, 1024)
print "Doing integration"
radialPoints2, radialInteg2 = pnCCDInteg.angularIntegration(testImage,
512.5,512,500)
# plt.subplot(223)
# plt.imshow(testImage2)
plt.subplot(224)
plt.plot(radialPoints2, radialInteg2)
plt.show()