-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathhistscale.m
225 lines (194 loc) · 6.08 KB
/
histscale.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
function hs = histscale(h, sod, opts)
% histscale - scale existing histogram to new data size
%
% FORMAT: hc = histscale(h, sod [, opts]);
%
% Input fields:
%
% h existing histogram
% sod new size (1x1 double) or data to match histogram with
% opts optional settings
% .bins bin defition (default: 0:numel(h)), given as
% 1x2 double: from:to
% 1x3 double: from:step:to
% 1xH double: actual bins (H = numel(h) + 1)
% .dist generate distribution (default: false)
% .distiv distribution with inter-value ranges (default: false)
% .smooth kernel to smooth histogram (default: 0)
%
% Output fields:
%
% hs output histogram (or data)
% Version: v0.9c
% Build: 12112316
% Date: Nov-23 2012, 10:41 AM EST
% Author: Jochen Weber, SCAN Unit, Columbia University, NYC, NY, USA
% URL/Info: http://neuroelf.net/
%
% Copyright (c) 2012, Jochen Weber
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in the
% documentation and/or other materials provided with the distribution.
% * Neither the name of Columbia University nor the
% names of its contributors may be used to endorse or promote products
% derived from this software without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
% ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
% WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
% DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
% DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
% (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
% LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
% ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
% (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
% argument check
if nargin < 2 || ...
(~isa(h, 'double') && ...
~isa(h, 'uint32')) || ...
isempty(h) || ...
numel(h) ~= max(size(h)) || ...
any(isinf(h) | isnan(h) | h < 0) || ...
~isnumeric(sod) || ...
isempty(sod) || ...
(numel(sod) == 1 && ...
~isa(sod, 'double'))
error( ...
'neuroelf:BadArgument', ...
'Bad or missing argument.' ...
);
end
nh = numel(h);
h = double(h(:));
h = h ./ sum(h);
if nargin < 3 || ...
~isstruct(opts) || ...
numel(opts) ~= 1
opts = struct;
end
if ~isfield(opts, 'bins') || ...
~isa(opts.bins, 'double') || ...
~any(numel(opts.bins) == [2, 3, (numel(h) + 1)]) || ...
any(isinf(opts.bins(:)) | isnan(opts.bins(:)));
opts.bins = 0:numel(h);
elseif numel(opts.bins) ~= (numel(h) + 1)
if numel(opts.bins) == 2
opts.bins = opts.bins(1):opts.bins(2);
else
opts.bins = opts.bins(1):opts.bins(2):opts.bins(3);
end
else
opts.bins = sort(opts.bins(:))';
end
if ~isfield(opts, 'dist') || ...
~islogical(opts.dist) || ...
numel(opts.dist) ~= 1
opts.dist = false;
end
if ~isfield(opts, 'distiv') || ...
~islogical(opts.distiv) || ...
numel(opts.distiv) ~= 1
opts.distiv = false;
end
if ~isfield(opts, 'smooth') || ...
~isa(opts.smooth, 'double') || ...
numel(opts.smooth) ~= 1 || ...
isinf(opts.smooth) || ...
isnan(opts.smooth) || ...
opts.smooth < 0
opts.smooth = 0;
else
opts.smooth = min(max(16, sqrt(numel(h))), opts.smooth);
end
% smooth histogram
if opts.smooth > 0
h = flexinterpn(h, [Inf; 1; 1; numel(h)], smoothkern(opts.smooth, 0), 1);
h = h ./ sum(h);
end
% single input size
if numel(sod) == 1
nsod = floor(sod);
else
nsod = numel(sod);
opts.dist = true;
end
% scale histogram
hs = round(nsod .* h);
% make sure numbers match
if sum(hs) ~= nsod
% compute difference
d = nsod - sum(hs);
% more than size of h
if abs(d) > (0.5 * nh)
hs = hs + round(d / nh);
end
% compute rounding errors
r = (nsod .* h) - hs;
% sort by error
[sr, si] = sort(r);
% missing elements
if d > 0
% add to elements with largest positive error
hs(si(end+1-d:end)) = hs(si(end+1-d:end)) + 1;
% too many elements
else
% subtract from elements with largest negative error
d = abs(d);
hs(si(1:d)) = hs(si(1:d)) - 1;
end
end
% generate distribution
if opts.dist
% input
hi = hs;
% output
if numel(sod) == 1
hs = zeros(sum(hi), 1);
ti = [];
else
[hs, ti] = sort(sod(:));
hs = sod;
end
% iterate
tix = 1;
for sc = 1:nh
% elements
ne = hi(sc);
% get binrange
bfrom = opts.bins(sc);
bto = opts.bins(sc + 1);
bstep = (bto - bfrom) / ne;
% intervalues
if opts.distiv
% target indices
if ~isempty(ti)
% generate and target-assign
hs(ti(tix:tix+ne-1)) = bfrom:bstep:(bto - 0.5 * bstep);
% no target indices
else
% generate and assign
hs(tix:tix+ne-1) = bfrom:bstep:(bto - 0.5 * bstep);
end
% bin centers (close to!)
else
% target indices
if ~isempty(ti)
% target-assign value
hs(ti(tix:tix+ne-1)) = 0.5 * (bfrom + bto - bstep);
% no target indices
else
% assign value
hs(tix:tix+ne-1) = 0.5 * (bfrom + bto - bstep);
end
end
% increase counter
tix = tix + ne;
end
end