-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathimage_complexity.m
144 lines (120 loc) · 4.76 KB
/
image_complexity.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
function cmi = image_complexity(im, isz)
% image_complexity - give image complexity estimate
%
% FORMAT: cmi = image_complexity(im [, isz])
%
% Input fields:
%
% im HxWxC image (where C is either 1 for gray or 3 for RGB!)
% isz resampling size for the estimation of complexity
% default is [64, 64]
%
% Output fields:
%
% cmi complexity estimate
% Version: v0.9a
% Build: 10051716
% Date: May-17 2010, 10:48 AM EST
% Author: Jochen Weber, SCAN Unit, Columbia University, NYC, NY, USA
% URL/Info: http://neuroelf.net/
% Copyright (c) 2010, Jochen Weber
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in the
% documentation and/or other materials provided with the distribution.
% * Neither the name of Columbia University nor the
% names of its contributors may be used to endorse or promote products
% derived from this software without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
% ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
% WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
% DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
% DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
% (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
% LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
% ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
% (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
% argument check
if nargin < 1 || ...
~isnumeric(im) || ...
isempty(im)
error( ...
'neuroelf:BadArgument', ...
'Invalid argument.' ...
);
end
im = double(im);
if nargin < 2 || ...
~isa(isz, 'double') || ...
numel(isz) ~= 2 || ...
any(isinf(isz) | isnan(isz) | isz < 4 | isz > 1024)
isz = [64, 64];
else
isz = round(isz(:)');
end
% grayscale image
if ndims(im) == 2
% compute gradient of image
[gx, gy] = gradient(im);
gr = sqrt(gx .* gx + gy .* gy);
% resample image to isz and back
nim = image_resize(image_resize(im, isz(1), isz(2)), size(im, 1), size(im, 2));
% recompute gradient
[gx, gy] = gradient(nim);
ngr = sqrt(gx .* gx + gy .* gy);
% compute estimate
cmi = mean(max(0, noinfnan((gr(:) - ngr(:)) ./ gr(:))));
% RGB image
else
% make sure to comply with RGB
mmm = minmaxmean(im);
uim = uint8(floor(255.999 .* ((1 / (mmm(2) - mmm(1)) .* (im - mmm(1))))));
% compute gray scale version first
gim = double(rgb2gray(uim));
% compute gradient of image
[gx, gy] = gradient(gim);
gr = sqrt(gx .* gx + gy .* gy);
% resample image to isz and back
nim = image_resize(image_resize(gim, isz(1), isz(2)), size(im, 1), size(im, 2));
% recompute gradient
[gx, gy] = gradient(nim);
ngr = sqrt(gx .* gx + gy .* gy);
dgr = max(0, noinfnan((gr(:) - ngr(:)) ./ gr(:)));
% perform the same for each color component
[gx, gy] = gradient(im(:, :, 1));
cgr = sqrt(gx .* gx + gy .* gy);
% resample image to isz and back
nim = image_resize(image_resize(im(:, :, 1), isz(1), isz(2)), size(im, 1), size(im, 2));
% recompute gradient
[gx, gy] = gradient(nim);
ngr = sqrt(gx .* gx + gy .* gy);
dcgr = max(0, noinfnan((cgr(:) - ngr(:)) ./ cgr(:)));
% 2nd component
[gx, gy] = gradient(im(:, :, 2));
cgr = sqrt(gx .* gx + gy .* gy);
% resample image to isz and back
nim = image_resize(image_resize(im(:, :, 2), isz(1), isz(2)), size(im, 1), size(im, 2));
% recompute gradient
[gx, gy] = gradient(nim);
ngr = sqrt(gx .* gx + gy .* gy);
dcgr = max(dcgr, max(0, noinfnan((cgr(:) - ngr(:)) ./ cgr(:))));
% 3rd component
[gx, gy] = gradient(im(:, :, 3));
cgr = sqrt(gx .* gx + gy .* gy);
% resample image to isz and back
nim = image_resize(image_resize(im(:, :, 3), isz(1), isz(2)), size(im, 1), size(im, 2));
% recompute gradient
[gx, gy] = gradient(nim);
ngr = sqrt(gx .* gx + gy .* gy);
dcgr = max(dcgr, max(0, noinfnan((cgr(:) - ngr(:)) ./ cgr(:))));
% mixed estimate
cmi = (1 / (size(im, 1) * size(im, 2))) * ...
(0.5 * sum(dgr(:)) + 0.5 * sum(dcgr(:)));
end