-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpoolnonsingletrial.m
147 lines (134 loc) · 4.61 KB
/
poolnonsingletrial.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
function [sdm, t, ixx, ixxt] = poolnonsingletrial(sdm, preds, spred, patt)
% poolsingletrial - pool all but one single trials of an SDM
%
% FORMAT: [sdm, t, ixx, ixxt] = poolnonsingletrial(sdm, preds, spred [, patt])
%
% Input fields:
%
% sdm TxP (time-by-predictors) double design matrix
% preds predictor names
% spred single-trial predictor (either name or number)
% patt optional detection pattern, default: '_T\d+$'
%
% Output fields:
%
% sdm adapted design matrix (spred will be the first!)
% t if requested, transposed design matrix
% ixx if requested, inverse of covariance matrix
% ixxt if requested, ixx * t
%
% Note: the pattern MUST end in a '$'. Also, any all-zero column will be
% removed!
% Version: v0.9d
% Build: 14071115
% Date: Jul-11 2014, 3:31 PM EST
% Author: Jochen Weber, SCAN Unit, Columbia University, NYC, NY, USA
% URL/Info: http://neuroelf.net/
% Copyright (c) 2014, Jochen Weber
% All rights reserved.
%
% Redistribution and use in source and binary forms, with or without
% modification, are permitted provided that the following conditions are met:
% * Redistributions of source code must retain the above copyright
% notice, this list of conditions and the following disclaimer.
% * Redistributions in binary form must reproduce the above copyright
% notice, this list of conditions and the following disclaimer in the
% documentation and/or other materials provided with the distribution.
% * Neither the name of Columbia University nor the
% names of its contributors may be used to endorse or promote products
% derived from this software without specific prior written permission.
%
% THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
% ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
% WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
% DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDERS BE LIABLE FOR ANY
% DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
% (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
% LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
% ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
% (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
% SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
% argument check
if nargin < 3 || ...
~isa(sdm, 'double') || ...
ndims(sdm) ~= 2 || ...
isempty(sdm) || ...
~iscell(preds) || ...
numel(preds) ~= size(sdm, 2) || ...
((~isa(spred, 'double') || ...
numel(spred) ~= 1 || ...
isinf(spred) || ...
isnan(spred) || ...
spred < 1 || ...
spred > numel(preds)) && ...
(~ischar(spred) || ...
isempty(spred)))
error( ...
'neuroelf:BadArgument', ...
'Bad or missing argument.' ...
);
end
preds = preds(:);
if ischar(spred)
spred = find(strcmp(preds, spred(:)'));
if numel(spred) ~= 1
error( ...
'neuroelf:BadArgument', ...
'Predictor name not found.' ...
);
end
end
if nargin < 4 || ...
ischar(patt) || ...
isempty(patt) || ...
isempty(regexpi(patt(:)', '\\d+')) || ...
patt(end) ~= '$'
patt = '_T\d+$';
else
patt = patt(:)';
end
% re-order
npred = setdiff(1:numel(preds), spred);
sdm = sdm(:,[spred, npred]);
preds = preds([spred, npred], 1);
% match predictors
stp = (~cellfun('isempty', regexpi(preds, patt)));
% unique
ucs = unique(regexprep(preds(stp), patt, ''));
ucp = lower(regexprep(ucs, '([\[\]\{\}\:\.\?\!\+\*\^\$\\])', '\\$1'));
% iterate over each of those
for cc = 1:numel(ucs)
% match
stp = (~cellfun('isempty', regexpi(preds, [ucp{cc} patt])));
% do not combine first condition
stp(1) = false;
% combine
if sum(stp) > 1
% find non-matches
ktp = find(~stp);
% combine
sdm = [sdm(:, 1), sum(sdm(:, stp), 2), sdm(:, ktp(2:end))];
preds = preds([1, 1, lsqueeze(ktp(2:end))'], 1);
preds(2) = ucp(cc);
end
end
% outputs
if nargout > 1
t = sdm';
if nargout > 2
if any(sdm(:, 1) ~= 0) && ...
~any(isinf(sdm(:)) | isnan(sdm(:)))
az = find(all(sdm == 0, 1));
if any(az)
sdm(:, az) = [];
t = sdm';
end
ixx = inv(t * sdm);
else
ixx = zeros(size(t, 1), size(sdm, 2));
end
if nargout > 3
ixxt = ixx * t;
end
end
end