-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathweight_evolution.py
45 lines (36 loc) · 1.25 KB
/
weight_evolution.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
import random
import numpy
class EvolModel:
def __init__(self):
self.NUM_ITERS = 500
self.NUM_CANDIDATES = 500
self.w = None
def fit(self, train_features, train_labels):
num_features = train_features.shape[1]
train_labels = numpy.array(train_labels)
w = numpy.random.uniform(-5,5,num_features)
prev_acc = 0.0
for i in range(self.NUM_ITERS):
candidates = self.generate_candidates(w)
accuracies = self.get_accuracies(candidates, train_features, train_labels)
index, val = max(enumerate(accuracies), key=lambda x:x[1])
if val >= prev_acc:
w = candidates[index]
prev_acc = val
self.w = w
def generate_candidates(self, w):
candidates = []
# for i in range(self.NUM_CANDIDATES):
c = numpy.random.uniform(-2, 2, size=[self.NUM_CANDIDATES, w.size])
candidates = c + w
return candidates
def get_accuracies(self, candidates, train_features, labels):
# accuracies = []
# for i, c in enumerate(candidates):
# print i
preds = numpy.sign(numpy.dot(train_features, candidates.T))
matches = preds.T*labels
accuracies = numpy.sum(matches > 0, axis = 1).flatten().tolist()
return accuracies
def predict(self, test_features):
return numpy.sign(numpy.dot(test_features, self.w))