-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathaction_sequence_statistics.py
60 lines (44 loc) · 1.48 KB
/
action_sequence_statistics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
#!/usr/bin/python3
"""
sys.argv[1] - input database file
sys.argv[2] - output mat file
Composed by Danyang Zhang @THU_IVG
Last revision: Danyang Zhang @THU_IVG @Oct 3rd, 2019 CST
"""
import json
import scipy.io as sio
import numpy as np
import itertools
import sys
db_f = sys.argv[1]
with open(db_f) as f:
database = json.load(f)["database"]
steps = list(sorted(set(itertools.chain.from_iterable(
int(an["id"]) for an in itertools.chain.from_iterable(
v["annotation"] for v in database.values())))))
min_id = steps[0]
nb_step = len(steps)
init_dist = np.zeros((nb_step,))
frequency_mat = np.zeros((nb_step, nb_step))
for v in database:
if database[v]["subset"]!="training":
continue
for i, an in enumerate(database[v]["annotation"]):
if i==0:
init_dist[int(an["id"])-min_id] += 1
else:
frequency_mat[int(pan["id"])-min_id, int(an["id"])-min_id] += 1
pan = an
normalized_init_dist = init_dist/np.sum(init_dist)
frequency_mat_sum = np.sum(frequency_mat, axis=1)
normalized_frequency_mat = np.copy(frequency_mat)
mask = frequency_mat_sum!=0
normalized_frequency_mat[mask] /= frequency_mat_sum[mask][:, None]
zero_position = np.where(np.logical_not(mask))[0]
normalized_frequency_mat[zero_position, zero_position] = 1.
sio.savemat(sys.argv[2], {
"init_dist": init_dist,
"frequency_mat": frequency_mat,
"normalized_init_dist": normalized_init_dist,
"normalized_frequency_mat": normalized_frequency_mat,
})