forked from jasonwebb/reaction-diffusion-playground
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathindex.html
471 lines (359 loc) · 24.1 KB
/
index.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
<!doctype html>
<html lang="en">
<head>
<!-- Google tag (gtag.js) -->
<script async src="https://www.googletagmanager.com/gtag/js?id=G-M8NH66GQTX"></script>
<script>
window.dataLayer = window.dataLayer || [];
function gtag(){dataLayer.push(arguments);}
gtag('js', new Date());
gtag('config', 'G-M8NH66GQTX');
</script>
<meta charset="utf-8">
<meta http-equiv="x-ua-compatible" content="ie=edge">
<title>Reaction-Diffusion Playground - Introduction</title>
<meta name="description" content="Interactive simulation with organic patterns and behaviors emerging naturally from two chemicals as they are mixed together.">
<meta name="viewport" content="width=device-width, initial-scale=1, shrink-to-fit=no">
<!-- Facebook OG -->
<meta property="og:type" content="website">
<meta property="og:url" content="https://jasonwebb.github.io/reaction-diffusion-playground/">
<meta property="og:title" content="Reaction-Diffusion Playground">
<meta property="og:image" content="https://raw.githubusercontent.com/jasonwebb/reaction-diffusion-playground/master/images/social-media-preview.jpg">
<meta property="og:image:width" content="1200">
<meta property="og:image:height" content="628">
<meta property="og:description" content="Interactive simulation with organic patterns and behaviors emerging naturally from two chemicals as they are mixed together.">
<meta property="og:locale" content="en_US">
<!-- Twitter card -->
<meta name="twitter:card" content="summary_large_image">
<meta name="twitter:creator" content="@jasonwebb">
<meta name="twitter:title" content="Reaction-Diffusion Playground">
<meta name="twitter:description" content="Interactive simulation with organic patterns and behaviors emerging naturally from two chemicals as they are mixed together.">
<meta name="twitter:image" content="https://raw.githubusercontent.com/jasonwebb/reaction-diffusion-playground/master/images/social-media-preview.jpg">
<link rel="stylesheet" href="https://cdn.jsdelivr.net/npm/[email protected]/css/bulma.min.css">
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/5.15.1/css/all.min.css" integrity="sha512-+4zCK9k+qNFUR5X+cKL9EIR+ZOhtIloNl9GIKS57V1MyNsYpYcUrUeQc9vNfzsWfV28IaLL3i96P9sdNyeRssA==" crossorigin="anonymous" />
</head>
<body>
<main>
<div class="container">
<h1 class="title">Reaction-Diffusion Playground</h1>
<p>Reaction-diffusion is a mathematical model describing how two chemicals might <b>react</b> to each other as they <b>diffuse</b> through a medium together. It was <a href="https://www.dna.caltech.edu/courses/cs191/paperscs191/turing.pdf">proposed by Alan Turing in 1952</a> as a possible explanation for how the interesting patterns of stripes and spots that are seen on the skin/fur of animals like giraffes and leopards form. <a href="#what-is-reaction-diffusion">Learn more about reaction-diffusion below</a>.</p>
<p>When run at large scales and high speeds, reaction-diffusion simulations can produce an amazing variety of dynamic, mesmerizing patterns and behaviors, as shown in the screenshots below. In the time since Turing published his original paper on the topic, reaction-diffusion has been studied extensively by researchers in biology, chemistry, physics, computer science, and other fields. Today it has become accepted as a plausible (some say proven) explanation for the formation of patterns such as <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2689028/">zebrafish pigmentation</a>, <a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2634019">hair follicle spacing</a>, the <a href="https://en.wikipedia.org/wiki/Belousov%E2%80%93Zhabotinsky_reaction">Belousov-Zhabotinsky (BZ) chemical reaction</a>, certain types of coral, zebra and tiger stripes, and more.</p>
<div class="buttons main-buttons">
<a href="app.html" class="button is-link">Open the playground</a>
<a href="https://github.com/jasonwebb/reaction-diffusion-playground" class="button is-white">
<span class="icon is-small"><span class="fab fa-github" aria-hidden="true"></span></span>
<span class="text">See the source code on Github</span>
</a>
</div>
</div>
<div class="screenshots">
<a href="images/screenshots/screenshot-1.png" class="tile">
<img src="images/screenshots/screenshot-1.png" alt="Screenshot 1">
</a>
<a href="images/screenshots/screenshot-2.png" class="tile">
<img src="images/screenshots/screenshot-2.png" alt="Screenshot 2">
</a>
<a href="images/screenshots/screenshot-3.png" class="tile">
<img src="images/screenshots/screenshot-3.png" alt="Screenshot 3">
</a>
<a href="images/screenshots/screenshot-4.png" class="tile">
<img src="images/screenshots/screenshot-4.png" alt="Screenshot 4">
</a>
<a href="images/screenshots/screenshot-5.png" class="tile">
<img src="images/screenshots/screenshot-5.png" alt="Screenshot 5">
</a>
<a href="images/screenshots/screenshot-6.png" class="tile">
<img src="images/screenshots/screenshot-6.png" alt="Screenshot 6">
</a>
<a href="images/screenshots/screenshot-7.png" class="tile">
<img src="images/screenshots/screenshot-7.png" alt="Screenshot 7">
</a>
<a href="images/screenshots/screenshot-8.png" class="tile">
<img src="images/screenshots/screenshot-8.png" alt="Screenshot 8">
</a>
<a href="images/screenshots/screenshot-9.png" class="tile">
<img src="images/screenshots/screenshot-9.png" alt="Screenshot 9">
</a>
<a href="images/screenshots/screenshot-10.png" class="tile">
<img src="images/screenshots/screenshot-10.png" alt="Screenshot 10">
</a>
<a href="images/screenshots/screenshot-11.png" class="tile">
<img src="images/screenshots/screenshot-11.png" alt="Screenshot 11">
</a>
<a href="images/screenshots/screenshot-12.png" class="tile">
<img src="images/screenshots/screenshot-12.png" alt="Screenshot 12">
</a>
</div>
<div style="background-color: rgba(0,0,0,.9); padding: 60px 0;">
<div class="container">
<div class="embed-responsive">
<iframe width="560" height="315" title="Reaction-Diffusion Playground demo video on YouTube" src="https://www.youtube.com/embed/8Nk0DhAtmgk" frameborder="0" allow="accelerometer; autoplay; clipboard-write; encrypted-media; gyroscope; picture-in-picture" allowfullscreen style="border: 1px solid rgba(255,255,255,.2); box-shadow: 0 0 50px rgba(0,0,0,1)"></iframe>
</div>
</div>
</div>
<div class="container">
<!-- USAGE section --------------------------->
<h2 class="subtitle" id="using-the-app">Using the app</h2>
<a href="images/ui-guide.jpg"><img src="images/ui-guide.jpg" alt="Annotated screenshot of the UI"></a>
<h3 id="style-map">Style map</h3>
<p>Upload an image from your computer to vary the <code>f</code>, <code>k</code>, <code>dA</code>, and <code>dB</code> values based on the brightness value of each pixel. The secondary values you choose here will become endstops in an interpolation calculation with the primary values (on the right UI pane). In other words, the four equation parameters will be interpolated to be between the original parameter values (on the right pane) and these secondary parameter values (left pane) using the brightness value of each pixel.</p>
<p>In addition to the reaction-diffusion equation parameters, you can also adjust the uniform scale, rotation, and X/Y offset of the image for different effects.</p>
<p>Your image will automatically be scaled to fit the entire canvas, so it may be stretched. Resize your image to match the width and height of the canvas (or at least its aspect ratio) to minimize distortion.</p>
<p>The following images make for good style maps, and are included in the source repository:</p>
<ul class="style-map-thumbnails">
<li><a href="images/style-maps/black-circle.png"><img src="images/style-maps/black-circle.png" alt="Solid black circle centered against a white background."></a></li>
<li><a href="images/style-maps/black-square.png"><img src="images/style-maps/black-square.png" alt="Solid black square centered against a white background."></a></li>
<li><a href="images/style-maps/gradient-circle.png"><img src="images/style-maps/gradient-circle.png" alt="Radial gradient starting at white in the center, fading to black on the edges, centered."></a></li>
<li><a href="images/style-maps/man.jpg"><img src="images/style-maps/man.jpg" alt="Portrait photo of old man with white beard and one fully white eye facing and looking at the camera."></a></li>
<li><a href="images/style-maps/perlin-noise.jpg"><img src="images/style-maps/perlin-noise.jpg" alt="Perlin noise, looking like a close up of a soft cloud."></a></li>
<li><a href="images/style-maps/reaction-diffusion-text.jpg"><img src="images/style-maps/reaction-diffusion-text.jpg" alt="The words reaction diffusion in white against a black background."></a></li>
<li><a href="images/style-maps/wood-noise.png"><img src="images/style-maps/wood-noise.png" alt="Noise that resembles wood grain, with horizontal lines that occasionally curl into knots."></a></li>
<li><a href="images/style-maps/worley-noise.jpg"><img src="images/style-maps/worley-noise.jpg" alt="Worley noise, like a bunch of radial gradients starting with black at their center."></a></li>
</ul>
<h3 id="bias">Bias</h3>
<p>Normally diffusion occurs evenly in all directions due to the default radially symmetrical Laplacian stencil. Using this X/Y pad you can "weight" this stencil to cause diffusion to favor one particular direction.</p>
<h3 id="equation-parameters">Equation parameters</h3>
<p>Each of the four fundamental parameters of the reaction-diffusion equation (<code>f</code>, <code>k</code>, <code>dA</code>, <code>dB</code>), along with the timestep increment, can be changed using the sliders found at the top of the right panel. Change them gradually to avoid collapsing the system.</p>
<h3 id="parameter-map">Interactive parameter map</h3>
<p><a href="images/parameter-map-screenshot.png" style="margin: 0 0 10px 10px; float: right"><img src="images/parameter-map-screenshot.png" alt="Screenshot of interactive parameter map" width="200px"></a>Use this map to navigate through the parameter space easily and find areas with interesting patterns and behaviors. <code>k</code> values are plotted along the X axis, <code>f</code> values along the Y axis.</p>
<p>Use the crosshairs attached to the mouse position to navigate to a region you're interested in, then click to set the main <code>f</code> and <code>k</code> values to match where you clicked.</p>
<p>This map is inspired by the <a href="http://mrob.com/pub/comp/xmorphia">work of Robert Munafo</a>.</p>
<h3 id="seed-pattern">Seed pattern</h3>
<p>Choose a pattern to use in the first frame of the simulation to seed the reaction. Each pattern has some additional options you can play with for different effects.</p>
<ul>
<li><b>Circle</b> - radius.
<li><b>Square</b> - width, height, scale, and rotation.
<li><b>Text</b> - string, size, rotation.
<li><b>Image</b> - upload an image from your computer, fit, scale, rotation.
</ul>
<p>Also provides buttons to reset the simulation with the selected pattern or clear the canvas completely.</p>
<h3 id="rendering-style">Rendering style</h3>
<p>Control how the chemical concentration data is translated into visuals.</p>
<h3 id="canvas-size">Canvas size</h3>
<p>Set the width and height of the simulation area.</p>
<p>You can also maximize the canvas to fit the entire viewport.</p>
<h3 id="global-actions">Global actions</h3>
<p>Buttons to pause/play or export an image of the current state of the simulation area.</p>
<h3 id="keyboard">Keyboard controls</h3>
<ul>
<li><code>Space</code> = pause/play.
<li><code>r</code> = reset using the currently-selected seed pattern.
<li><code>s</code> = save an image of the current canvas content.
<li><code>u</code> = show/hide the UI.
</ul>
<h3 id="mouse">Mouse controls</h3>
<p>Click and drag anywhere on the canvas to increase the concentration of the <code>B</code> chemical around the mouse position.</p>
<p>Use your mouse wheel to change the diameter of the area affected by clicking / dragging. The size of the brush is indicated with a circle that follows the mouse.</p>
<h3 id="midi">MIDI controls</h3>
<p>If you have an Akai LPD8 Wireless or a Novation Launch Control XL, mappings are provided for the various pads and knobs. See <code>./js/midi.js</code> for details.</p>
<!-- WHAT section --------------------------->
<h2 class="subtitle" id="what-is-reaction-diffusion">What is reaction-diffusion?</h2>
<p>Reaction-diffusion is a mathematical model describing how two chemicals might <b>react</b> to each other as they <b>diffuse</b> through a medium together. It was <a href="https://www.dna.caltech.edu/courses/cs191/paperscs191/turing.pdf">proposed by Alan Turing in 1952</a> as a possible explanation for how the interesting patterns of stripes and spots that are seen on the skin/fur of animals like giraffes and leopards form.</p>
<p>The reaction-diffusion equations really only describes how the concentrations of the chemicals change over time, which means that all of the interesting patterns and behaviors that we see are <a href="https://en.wikipedia.org/wiki/Emergence">emergent phenomena</a>.</p>
<p>Here's what the equations look like:</p>
<img src="https://camo.githubusercontent.com/6a5b7b40467455254ed239cfc966eda29f7cfcafda71e1212f407046396017e8/68747470733a2f2f7777772e6b61726c73696d732e636f6d2f72642d6571756174696f6e2e706e67" alt="The two reaction-diffusion differential equations with boxes around each part, explained in text bubbles nearby and the text below.">
<p class="is-italic"><a href="https://www.karlsims.com/rd.html">Credit to Karl Sims for the equation illustration above.</a></p>
<p>The most important terms, the ones we'll want to turn into tweakable parameters, are:</p>
<ul>
<li><code>f</code> - feed rate. Determines how much of chemical A is added to the system in each iteration.
<li><code>k</code> - kill rate. Determines how much of chemical B is removed from the system in each iteration.
<li><code>dA</code> - diffusion rate for chemical A. Determines how much chemical A spreads to neighboring cells each iteration.
<li><code>dB</code> - diffusion rate for chemical B. Determines how much of chemical B spreads to neighboring cells each iteration.
</ul>
<p>The other terms in the equation are usually kept constant, but might be worth playing around with once you are comfortable with the core parameters:</p>
<ul>
<li><code>∇<sup>2</sup></code> - the Laplacian operator. Essentially a single value that represents the chemical concentration of the neighbors to the current cell.
<li><code>AB<sup>2</sup></code> - reaction rate. Note that it is subtracted in the equation for chemical A and added in the equation for chemical B. This is how the chemical reaction converting chemical A into chemical B is modelled.
<li><code>Δt</code> - timestep. Using <code>1.0</code> here means it runs at "normal" speed. Smaller values are like slow motion, and larger values make it run faster. Large values can cause the system to collapse.
</ul>
<a href="https://github.com/jasonwebb/morphogenesis-resources#reaction-diffusion" class="button is-dark" style="margin-top: 20px; font-size: 18px">Learn more about reaction-diffusion in my morphogenesis-resources repo.</a>
<!-- HOW section -------------------------->
<h2 class="subtitle" id="how-does-it-work">How does this work?</h2>
<p>Most reaction-diffusion simulations store values representing the concentrations of the two chemicals (<code>A</code> and <code>B</code>) in a 2D grid format, then applies the reaction-diffusion equations to each cell in the grid. In this simulation, <a href="https://threejs.org/docs/index.html#api/en/textures/DataTexture">data textures</a> matching the size of the screen (canvas) are used for the 2D grid, and custom shaders are used to apply the reaction-diffusion equations to each pixel (texel) of these textures.</p>
<p>Each pixel/texel of the simulation data texture encodes the <code>A</code> and <code>B</code> concentrations for that location in the <code>R</code> and <code>G</code> channels as a normalized float value (<code>[0.0-1.0]</code>).</p>
<p>In each frame of the simulation, a custom fragment shader (<code>./glsl/simulationFrag.glsl</code>) reads the values of the last frame's data texture as an input and applies the reaction-diffusion equation to every pixel. Data textures are rendered back and forth between two <a href="https://threejs.org/docs/index.html#api/en/renderers/WebGLRenderTarget">render targets</a> many times per frame with a technique called ping-pong to speed things up.</p>
<p>Once the simulation has been run enough times, another fragment shader (<code>./glsl/displayFrag.glsl</code>) reads the latest data texture and maps the chemical concentration data to color values (configurable in the UI).</p>
<p>Just about every option you see in the UI controls one or more <a href="https://threejs.org/docs/#api/en/core/Uniform">uniforms</a> that get passed to these fragment shaders to influence the reaction-diffusion equations or the way the data texture information is translated into colors.</p>
<a href="https://github.com/jasonwebb/reaction-diffusion-playground" class="button is-link" style="margin-top: 20px; font-size: 18px">
<span class="icon is-small"><span class="fab fa-github" aria-hidden="true"></span></span>
<span>See the source code on Github</span>
</a>
<!-- REFERENCES section ------------------>
<h2 class="subtitle" id="references">References</h2>
<h3 id="fundamentals">Fundamentals</h3>
<p>These papers, articles, and videos helped me understand how the reaction-diffusion algorithm works.</p>
<ul>
<li><a href="http://www.dna.caltech.edu/courses/cs191/paperscs191/turing.pdf" rel="nofollow">The Chemical Basis of Morphogenesis</a> (PDF) paper by Alan Turing (1952)</li>
<li><a href="https://www.karlsims.com/rd.html" rel="nofollow">Reaction-Diffusion Tutorial</a> by Karl Sims</li>
<li><a href="https://mrob.com/pub/comp/xmorphia/" rel="nofollow">Reaction-Diffusion by the Gray-Scott Model: Pearson's Parametrization</a> by Robert Munafo (mrob)</li>
<li><a href="https://www.youtube.com/watch?v=LMzYrsfTiEw" rel="nofollow">Reaction Diffusion: A Visual Explanation</a> by Arsiliath</li>
<li><a href="https://www.youtube.com/watch?v=BV9ny785UNc" rel="nofollow">Coding Challenge #13: Reaction Diffusion Algorithm in p5.js</a> by Daniel Shiffman (<a href="https://github.com/CodingTrain/website/tree/master/CodingChallenges/CC_013_ReactionDiffusion">Github repo</a> with both p5.js and Processing source code)</li>
</ul>
<h3 id="code">Code</h3>
<p>These articles, repos, and project pages helped me figure out how to build my implementation.</p>
<ul>
<li><a href="https://github.com/pmneila/jsexp">Gray-Scott - JavaScript experiments</a> by @pmneila</li>
<li><a href="https://vimeo.com/233530691" rel="nofollow">Processing: Reaction Diffusion Halftone patterns</a> by Ignazio Lucenti</li>
<li><a href="https://www.redblobgames.com/x/1905-reaction-diffusion/" rel="nofollow">Reaction Diffusion</a> (JavaScript + WebGL) by Red Blob Games</li>
<li><a href="https://kaesve.nl/projects/reaction-diffusion/readme.html" rel="nofollow">Reaction Diffusion</a> by Ken Voskuil (look in the DOM)</li>
<li><a href="https://github.com/colejd/Reaction-Diffusion-ThreeJS">Reaction-Diffusion Simulation in Three.js</a> (JavaScript + ThreeJS) by Jonathan Cole</li>
</ul>
<h3 id="creative">Creative</h3>
<p>These projects inspired me to explore some of the creative possibilities of reaction-diffusion.</p>
<ul>
<li><a href="https://www.instructables.com/id/3D-Printed-Reaction-Diffusion-Patterns/" rel="nofollow">3D Printed Reaction Diffusion Patterns</a> Instructable by Reza Ali</li>
<li><a href="https://cacheflowe.com/code/installation/silhouect" rel="nofollow">Silhouect</a> by Justin Gitlin (@cacheflowe)</li>
<li><a href="https://n-e-r-v-o-u-s.com/blog/?p=8222" rel="nofollow">Coral Cup</a> by Nervous System</li>
<li><a href="https://n-e-r-v-o-u-s.com/projects/albums/reaction-products/" rel="nofollow">Reaction Lamps</a> by Nervous System</li>
<li><a href="https://n-e-r-v-o-u-s.com/projects/albums/reaction-table/" rel="nofollow">Reaction Table</a> by Nervous System</li>
<li><a href="https://n-e-r-v-o-u-s.com/blog/?p=992" rel="nofollow">Reaction shelf</a> by Nervous System</li>
</ul>
<p></p>
<a href="https://github.com/jasonwebb/morphogenesis-resources#reaction-diffusion" class="button is-dark is-out" style="font-size: 18px; margin-top: 30px">More references can be found in my morphogenesis-resources repo</a>
</div>
</main>
<style>
main {
padding-top: 40px;
padding-bottom: 150px;
font-size: 18px !important;
}
p {
margin: 20px 0;
}
p a {
text-decoration: underline;
}
.button {
border-radius: 0;
}
.button:focus {
outline: revert;
outline-offset: 5px;
box-shadow: none !important;
}
.button:hover .text,
.button:focus .text {
text-decoration: underline;
}
ul {
list-style-type: disc;
margin: 20px 0 20px 40px;
}
ul li a:hover,
ul li a:focus {
text-decoration: underline;
}
h1, h2, h3 {
font-family: Verdana, Geneva, Tahoma, sans-serif;
font-weight: bold !important;
}
h2 {
font-size: 28px !important;
margin-top: 90px;
margin-bottom: 30px !important;
padding-bottom: 10px;
border-bottom: 1px solid rgba(0,0,0,.1);
}
h3 {
margin-top: 40px;
}
h3 + p {
margin-top: 0;
}
.embed-responsive {
position: relative;
padding-bottom: 56.25%;
height: 0;
}
.embed-responsive iframe {
position: absolute;
top: 0;
left: 0;
width: 100%;
height: 100%;
}
.main-buttons {
margin-top: 40px;
}
.main-buttons .button {
font-size: 20px;
}
.main-buttons .button.is-white {
opacity: .7;
}
.main-buttons .button.is-white:hover,
.main-buttons .button.is-white:focus {
background: none;
}
.screenshots {
display: flex;
flex-wrap: wrap;
padding: 60px 0 0 0;
}
.tile {
flex: 0 0 calc(25% - 2px);
height: 375px;
display: flex;
overflow: hidden;
position: relative;
margin-right: 2px;
margin-bottom: 2px;
}
.tile:before {
content: '';
position: absolute;
top: 0;
left: 0;
z-index: 1;
width: 100%;
height: 100%;
transition: all .2s linear;
}
.tile img {
object-fit: cover;
width: 100%;
height: 100%;
transition: all .4s ease-in-out;
}
.tile:hover img,
.tile:focus img {
transform: scale(1.1);
}
.tile:focus {
outline: 0;
}
.tile:focus:before {
outline: 8px dashed white;
outline-offset: -14px;
}
.style-map-thumbnails {
list-style: none;
margin: 0;
padding: 0;
width: 60%;
display: flex;
flex-wrap: wrap;
}
.style-map-thumbnails li {
flex: 0 0 calc(100%/8);
}
.style-map-thumbnails li a {
display: block;
border: 1px solid rgba(0,0,0,.2);
padding: 3px;
margin-right: 8px;
}
.style-map-thumbnails li a img {
display: block;
object-fit: cover;
width: 100%;
height: 100%;
}
.style-map-thumbnails li a:hover,
.style-map-thumbnails li a:focus {
border-color: black;
}
</style>
</body>
</html>