-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathevaluator.py
475 lines (380 loc) · 14.8 KB
/
evaluator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
import os
import gc
import glob
import shutil
import argparse
import logging
import json
from tqdm import tqdm
import numpy as np
import torch
import multiprocessing
from generate_data import get_lc
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM
from LaSE import LaSEScorer
from LaSE.utils import LANG2ISO
from utils import calculate_rouge
logging.basicConfig(level=logging.INFO)
args = None
def get_parser():
parser = argparse.ArgumentParser()
parser.add_argument(
'--dataset_dir',
metavar='PATH',
help="Input directory"
)
parser.add_argument(
'--output_dir',
required=True,
metavar='PATH',
help="Output directory"
)
parser.add_argument(
'--evaluation_type', type=str,
choices=["baseline", "xlingual"],
required=True,
help="""Evaluation type
(baseline i.e. summarization + translation /
cross-lingual summarization)"""
)
parser.add_argument(
'--data_type', type=str,
choices=["val", "test"],
required=True,
help="""Evaluation data type (validation / test)"""
)
parser.add_argument(
'--xlingual_summarization_model_name_or_path',
metavar='PATH',
help="""HF name or path to cross-lingual summarization model.
Applicable when evaluation_type == xlingual"""
)
parser.add_argument(
'--multilingual_summarization_model_name_or_path',
metavar='PATH',
default="csebuetnlp/mT5_multilingual_XLSum",
help="""HF name or path to multi-lingual summarization model.
Applicable when evaluation_type == baseline"""
)
parser.add_argument(
'--multilingual_translation_model_name_or_path',
metavar='PATH',
default="facebook/m2m100_418M",
help="""HF name or path to multi-lingual translation model.
Applicable when evaluation_type == baseline"""
)
parser.add_argument('--max_source_length', type=int,
default=512,
help='Maximum source length'
)
parser.add_argument('--max_target_length', type=int,
default=84,
help='Maximum target length'
)
parser.add_argument('--batch_size', type=int,
default=16,
help='Evaluation batch size'
)
parser.add_argument('--beam_size', type=int,
default=5,
help='Evaluation beam size'
)
parser.add_argument('--no_repeat_ngram_size', type=int,
default=2,
help='Evaluation no repeat ngram size'
)
parser.add_argument('--length_penalty', type=float,
default=0.6,
help='Evaluation length penalty'
)
parser.add_argument('--required_src_lang', type=str,
default=None,
help='''Only evaluate pairs having this language as the src.
If not any of required_src_lang, required_tgt_lang and required_pairs
are provided, runs evaluation on all found pairs.'''
)
parser.add_argument('--required_tgt_lang', type=str,
default=None,
help='''Only evaluate pairs having this language as the tgt.
If not any of required_src_lang, required_tgt_lang and required_pairs
are provided, runs evaluation on all found pairs.'''
)
parser.add_argument('--required_pairs', type=str, nargs="*",
default=[],
help='''Only evaluate these language pairs. Pair names have to be hyphenated (e.g. `bengali-english`).
If not any of required_src_lang, required_tgt_lang and required_pairs
are provided, runs evaluation on all found pairs.'''
)
parser.add_argument('--device', type=str,
default="cuda",
help='''Evaluation device'''
)
return parser
def read_json(path):
with open(path) as f:
return json.load(f)
def write_json(obj, path):
with open(path, 'w') as f:
json.dump(obj, f, ensure_ascii=False, indent=4)
def get_batches(data_iterator, batch_size=8):
for i in range(0, len(data_iterator), batch_size):
yield data_iterator[i: i + batch_size]
def read_lines(input_path):
with open(input_path) as f:
return [l.strip() for l in f.readlines()]
_LOADED_MODELS = {}
_LASE_SCORER = LaSEScorer()
def load_model(model_name_or_path, model_type, device):
global _LOADED_MODELS
if model_type not in _LOADED_MODELS:
_LOADED_MODELS[model_type] = {
"tokenizer": AutoTokenizer.from_pretrained(model_name_or_path),
"model": AutoModelForSeq2SeqLM.from_pretrained(model_name_or_path).to(device)
}
def summarize_and_translate(
input_path,
summarization_path,
translation_path,
src_lang,
tgt_lang,
):
global _LOADED_MODELS
if os.path.isfile(summarization_path) and os.path.isfile(translation_path):
return
# run summarization
input_lines = read_lines(input_path)
summarized_lines = []
with open(summarization_path, 'w') as outf:
for batch in get_batches(input_lines, batch_size=args.batch_size):
encoded_tokens = _LOADED_MODELS["summarization"]["tokenizer"](
batch,
return_tensors="pt",
padding="longest",
truncation=True,
max_length=args.max_source_length
).to(args.device)
generated_tokens = _LOADED_MODELS["summarization"]["model"].generate(
**encoded_tokens,
max_length=args.max_target_length,
no_repeat_ngram_size=args.no_repeat_ngram_size,
num_beams=args.beam_size,
length_penalty=args.length_penalty
)
output_lines = _LOADED_MODELS["summarization"]["tokenizer"].batch_decode(
generated_tokens,
skip_special_tokens=True
)
summarized_lines += output_lines
for o in output_lines:
print(o.strip(), file=outf)
# run translation
_LOADED_MODELS["translation"]["tokenizer"].src_lang = src_lang
with open(translation_path, 'w') as outf:
for batch in get_batches(summarized_lines, batch_size=args.batch_size):
encoded_tokens = _LOADED_MODELS["translation"]["tokenizer"](
batch,
return_tensors="pt",
padding="longest"
).to(args.device)
generated_tokens = _LOADED_MODELS["translation"]["model"].generate(
**encoded_tokens,
forced_bos_token_id=_LOADED_MODELS["translation"]["tokenizer"].get_lang_id(tgt_lang)
)
output_lines = _LOADED_MODELS["translation"]["tokenizer"].batch_decode(
generated_tokens,
skip_special_tokens=True
)
for o in output_lines:
print(o.strip(), file=outf)
def summarize_xlingual(
input_dir,
output_dir,
tgt_lang,
args
):
if os.path.isfile(os.path.join(output_dir, f"{args.data_type}_generations.txt")):
return
script_path = os.path.abspath("pipeline.py")
script_args = [
f"--model_name_or_path {args.xlingual_summarization_model_name_or_path}",
f"--data_dir {input_dir}",
f"--output_dir {output_dir}",
f"--per_device_eval_batch_size {args.batch_size}",
f"--max_source_length {args.max_source_length}",
f"--{args.data_type}_max_target_length {args.max_target_length}",
f"--length_penalty {args.length_penalty}",
f"--no_repeat_ngram_size {args.no_repeat_ngram_size}",
f"--eval_beams {args.beam_size}",
f"--tgt_lang {tgt_lang}",
f"--rouge_lang {tgt_lang}",
"--overwrite_output_dir",
"--predict_with_generate",
"--do_predict",
"--use_langid",
"--seed 1234",
"--no_cuda" if not args.device.startswith("cuda") else ""
]
cmd = "python " + script_path + " " + " ".join(script_args)
os.system(cmd)
def calculate_lase(
pred_lns,
tgt_lns,
tgt_lang
):
scores = [_LASE_SCORER.score(ref.strip(), pred.strip(), target_lang=tgt_lang)
for ref, pred in zip(tgt_lns, pred_lns)]
avg = lambda k: round(np.mean([getattr(score, k) for score in scores]) * 100, 4)
return {
k: avg(k) for k in ["ms", "lc", "lp", "LaSE"]
}
def process_pair(pair):
root_output_dir = os.path.join(args.output_dir, args.data_type, "outputs")
root_log_dir = os.path.join(args.output_dir, args.data_type, "logs")
source_suffix = f"_{args.data_type}.source"
target_suffix = f"_{args.data_type}.target"
src_lang, tgt_lang = pair.split("-")
scores = {}
log_path = os.path.join(root_log_dir, pair + ".log")
if os.path.isfile(log_path):
return
def evaluate(lase_key):
dir_prefix = pair + "-" + ("crossum" if lase_key == "LaSE_in_lang" else "xlsum")
dir_name = os.path.join(root_output_dir, dir_prefix)
os.makedirs(dir_name, exist_ok=True)
prefix = pair if lase_key == "LaSE_in_lang" else f"{src_lang}-{src_lang}"
root_source_path = os.path.join(args.dataset_dir, prefix + source_suffix)
pipeline_source_path = os.path.join(dir_name, source_suffix[1:])
root_target_path = os.path.join(args.dataset_dir, prefix + target_suffix)
pipeline_target_path = os.path.join(dir_name, target_suffix[1:])
if (
not os.path.isfile(root_source_path) or
not os.path.isfile(root_target_path) or
get_lc(root_target_path) == 0
):
return
shutil.copy(
root_source_path,
pipeline_source_path
)
shutil.copy(
root_target_path,
pipeline_target_path
)
# specially handly validation files
# since output file is generated for
# test files only
if args.data_type == "val":
shutil.copy(
pipeline_source_path,
os.path.join(dir_name, "test.source")
)
shutil.copy(
pipeline_target_path,
os.path.join(dir_name, "test.target")
)
if args.evaluation_type == "xlingual":
summarize_xlingual(dir_name, dir_name, tgt_lang, args)
if args.data_type == "val":
shutil.move(
os.path.join(dir_name, f"test_generations.txt"),
os.path.join(dir_name, f"val_generations.txt")
)
os.remove(os.path.join(dir_name, "test.source"))
os.remove(os.path.join(dir_name, "test.target"))
pred_lines = read_lines(
os.path.join(dir_name, f"{args.data_type}_generations.txt")
)
ref_lines = read_lines(pipeline_target_path)
elif args.evaluation_type == "baseline":
src_iso, tgt_iso = LANG2ISO.get(src_lang, None), LANG2ISO.get(tgt_lang, None)
if (
not src_iso or
not tgt_iso or
src_iso not in _LOADED_MODELS["translation"]["tokenizer"].lang_code_to_token or
tgt_iso not in _LOADED_MODELS["translation"]["tokenizer"].lang_code_to_token
):
return
summarized_path = pipeline_source_path + ".summarized"
translated_path = summarized_path + ".translated"
summarize_and_translate(
pipeline_source_path,
summarized_path,
translated_path,
src_iso,
tgt_iso,
)
pred_lines = read_lines(translated_path)
ref_lines = read_lines(pipeline_target_path)
if lase_key == "LaSE_in_lang":
scores.update(
calculate_rouge(pred_lines, ref_lines, rouge_lang=tgt_lang)
)
lase_scores = calculate_lase(pred_lines, ref_lines, tgt_lang)
for k in lase_scores:
scores[f"{lase_key}_{k}"] = lase_scores[k]
# first do crossum evaluation (in lang LaSE)
evaluate("LaSE_in_lang")
# if src_lang != tgt_lang:
# # now do xlsum evaluation (out lang LaSE)
# evaluate("LaSE_out_lang")
# write combined results
write_json(
scores,
log_path
)
gc.collect()
def run():
root_output_dir = os.path.join(args.output_dir, args.data_type, "outputs")
root_log_dir = os.path.join(args.output_dir, args.data_type, "logs")
os.makedirs(root_output_dir, exist_ok=True)
os.makedirs(root_log_dir, exist_ok=True)
if args.evaluation_type == "baseline":
load_model(
args.multilingual_summarization_model_name_or_path,
"summarization",
args.device
)
load_model(
args.multilingual_translation_model_name_or_path,
"translation",
args.device
)
source_suffix = f"_{args.data_type}.source"
target_suffix = f"_{args.data_type}.target"
required_files = glob.glob(os.path.join(args.dataset_dir, "*" + target_suffix))
required_pairs = [os.path.basename(k).rsplit(target_suffix, 1)[0] for k in required_files]
if args.required_pairs:
required_pairs = [k for k in args.required_pairs
if os.path.isfile(os.path.join(args.dataset_dir, k + target_suffix))]
if args.required_src_lang:
required_pairs = [k for k in required_pairs
if k.split("-")[0] == args.required_src_lang]
if args.required_tgt_lang:
required_pairs = [k for k in required_pairs
if k.split("-")[1] == args.required_tgt_lang]
required_pairs = sorted(required_pairs)
for pair in required_pairs:
process_pair(pair)
# aggregate results
combined_results_path = os.path.join(args.output_dir, args.data_type, "combined_results.log")
logging.info("Writing the combined results to " + combined_results_path)
with open(combined_results_path, 'w') as outf:
iterator = glob.glob(
os.path.join(root_log_dir, "*.log")
)
keys = ["Language pair", "rouge1", "rouge2", "rougeL"] + [
f"{lase_key}_{k}" for lase_key in ["LaSE_in_lang", "LaSE_out_lang"]
for k in ["ms", "lc", "lp", "LaSE"]
]
row_format = "{}\t" * (len(keys) - 1) + "{}"
header = row_format.format(*keys)
print(header, file=outf)
for log_path in iterator:
data = read_json(log_path)
lang_pair = os.path.basename(log_path).rsplit(".log", 1)[0]
row = [lang_pair] + [data.get(k, "") for k in keys[1:]]
print(row_format.format(*row), file=outf)
if __name__ == "__main__":
parser = get_parser()
args = parser.parse_args()
run()