-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathflow_IO.py
453 lines (361 loc) · 16.4 KB
/
flow_IO.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import struct
import numpy as np
import png
import re
import sys
import csv
from PIL import Image
import h5py
FLO_TAG_FLOAT = 202021.25 # first 4 bytes in flo file; check for this when READING the file
FLO_TAG_STRING = "PIEH" # first 4 bytes in flo file; use this when WRITING the file
FLO_UNKNOWN_FLOW_THRESH = 1e9 # flo format threshold for unknown values
FLO_UNKNOWN_FLOW = 1e10 # value to use to represent unknown flow in flo file format
def readFlowFile(filepath):
"""read flow files in several formats. The resulting flow has shape height x width x 2.
For positions where there is no groundtruth available, the flow is set to np.nan.
Supports flo (Sintel), png (KITTI), npy (numpy), pfm (FlyingThings3D) and flo5 (Spring) file format.
filepath: path to the flow file
returns: flow with shape height x width x 2
"""
if filepath.endswith(".flo"):
return readFloFlow(filepath)
elif filepath.endswith(".png"):
return readPngFlow(filepath)
elif filepath.endswith(".npy"):
return readNpyFlow(filepath)
elif filepath.endswith(".pfm"):
return readPfmFlow(filepath)
elif filepath.endswith(".flo5"):
return readFlo5Flow(filepath)
else:
raise ValueError(f"readFlowFile: Unknown file format for {filepath}")
def writeFlowFile(flow, filepath):
"""write optical flow to file. Supports flo (Sintel), png (KITTI) and npy (numpy) file format.
flow: optical flow with shape height x width x 2. Invalid values should be represented as np.nan
filepath: file path where to write the flow
"""
if not filepath:
raise ValueError("writeFlowFile: empty filepath")
if len(flow.shape) != 3 or flow.shape[2] != 2:
raise IOError(f"writeFlowFile {filepath}: expected shape height x width x 2 but received {flow.shape}")
if flow.shape[0] > flow.shape[1]:
print(f"write flo file {filepath}: Warning: Are you writing an upright image? Expected shape height x width x 2, got {flow.shape}")
if filepath.endswith(".flo"):
return writeFloFlow(flow, filepath)
elif filepath.endswith(".png"):
return writePngFlow(flow, filepath)
elif filepath.endswith(".npy"):
return writeNpyFile(flow, filepath)
elif filepath.endswith(".flo5"):
return writeFlo5File(flow, filepath)
else:
raise ValueError(f"writeFlowFile: Unknown file format for {filepath}")
def readFloFlow(filepath):
"""read optical flow from file stored in .flo file format as used in the Sintel dataset (Butler et al., 2012)
filepath: path to file where to read from
returns: flow as a numpy array with shape height x width x 2
---
".flo" file format used for optical flow evaluation
Stores 2-band float image for horizontal (u) and vertical (v) flow components.
Floats are stored in little-endian order.
A flow value is considered "unknown" if either |u| or |v| is greater than 1e9.
bytes contents
0-3 tag: "PIEH" in ASCII, which in little endian happens to be the float 202021.25
(just a sanity check that floats are represented correctly)
4-7 width as an integer
8-11 height as an integer
12-end data (width*height*2*4 bytes total)
the float values for u and v, interleaved, in row order, i.e.,
u[row0,col0], v[row0,col0], u[row0,col1], v[row0,col1], ...
"""
if (filepath is None):
raise IOError("read flo file: empty filename")
if not filepath.endswith(".flo"):
raise IOError(f"read flo file ({filepath}): extension .flo expected")
with open(filepath, "rb") as stream:
tag = struct.unpack("f", stream.read(4))[0]
width = struct.unpack("i", stream.read(4))[0]
height = struct.unpack("i", stream.read(4))[0]
if tag != FLO_TAG_FLOAT: # simple test for correct endian-ness
raise IOError(f"read flo file({filepath}): wrong tag (possibly due to big-endian machine?)")
# another sanity check to see that integers were read correctly (99999 should do the trick...)
if width < 1 or width > 99999:
raise IOError(f"read flo file({filepath}): illegal width {width}")
if height < 1 or height > 99999:
raise IOError(f"read flo file({filepath}): illegal height {height}")
nBands = 2
flow = []
n = nBands * width
for _ in range(height):
data = stream.read(n * 4)
if data is None:
raise IOError(f"read flo file({filepath}): file is too short")
data = np.asarray(struct.unpack(f"{n}f", data))
data = data.reshape((width, nBands))
flow.append(data)
if stream.read(1) != b'':
raise IOError(f"read flo file({filepath}): file is too long")
flow = np.asarray(flow)
# unknown values are set to nan
flow[np.abs(flow) > FLO_UNKNOWN_FLOW_THRESH] = np.nan
return flow
def writeFloFlow(flow, filepath):
"""
write optical flow in .flo format to file as used in the Sintel dataset (Butler et al., 2012)
flow: optical flow with shape height x width x 2
filepath: optical flow file path to be saved
---
".flo" file format used for optical flow evaluation
Stores 2-band float image for horizontal (u) and vertical (v) flow components.
Floats are stored in little-endian order.
A flow value is considered "unknown" if either |u| or |v| is greater than 1e9.
bytes contents
0-3 tag: "PIEH" in ASCII, which in little endian happens to be the float 202021.25
(just a sanity check that floats are represented correctly)
4-7 width as an integer
8-11 height as an integer
12-end data (width*height*2*4 bytes total)
the float values for u and v, interleaved, in row order, i.e.,
u[row0,col0], v[row0,col0], u[row0,col1], v[row0,col1], ...
"""
height, width, nBands = flow.shape
with open(filepath, "wb") as f:
if f is None:
raise IOError(f"write flo file {filepath}: file could not be opened")
# write header
result = f.write(FLO_TAG_STRING.encode("ascii"))
result += f.write(struct.pack('i', width))
result += f.write(struct.pack('i', height))
if result != 12:
raise IOError(f"write flo file {filepath}: problem writing header")
# write content
n = nBands * width
for i in range(height):
data = flow[i, :, :].flatten()
data[np.isnan(data)] = FLO_UNKNOWN_FLOW
result = f.write(struct.pack(f"{n}f", *data))
if result != n * 4:
raise IOError(f"write flo file {filepath}: problem writing row {i}")
def readPngFlow(filepath):
"""read optical flow from file stored in png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
filepath: path to file where to read from
returns: flow as a numpy array with shape height x width x 2. Invalid values are represented as np.nan
"""
# adapted from https://github.com/liruoteng/OpticalFlowToolkit
flow_object = png.Reader(filename=filepath)
flow_direct = flow_object.asDirect()
flow_data = list(flow_direct[2])
(w, h) = flow_direct[3]['size']
flow = np.zeros((h, w, 3), dtype=np.float64)
for i in range(len(flow_data)):
flow[i, :, 0] = flow_data[i][0::3]
flow[i, :, 1] = flow_data[i][1::3]
flow[i, :, 2] = flow_data[i][2::3]
invalid_idx = (flow[:, :, 2] == 0)
flow[:, :, 0:2] = (flow[:, :, 0:2] - 2 ** 15) / 64.0
flow[invalid_idx, 0] = np.nan
flow[invalid_idx, 1] = np.nan
return flow[:, :, :2]
def writePngFlow(flow, filename):
"""write optical flow to file png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
flow: optical flow in shape height x width x 2, invalid values should be represented as np.nan
filepath: path to file where to write to
"""
flow = 64.0 * flow + 2**15
width = flow.shape[1]
height = flow.shape[0]
valid_map = np.ones([flow.shape[0], flow.shape[1], 1])
valid_map[np.isnan(flow[:,:,0]) | np.isnan(flow[:,:,1])] = 0
flow = np.nan_to_num(flow)
flow = np.concatenate([flow, valid_map], axis=-1)
flow = np.clip(flow, 0, 2**16-1)
flow = flow.astype(np.uint16)
flow = np.reshape(flow, (-1, width*3))
with open(filename, "wb") as f:
writer = png.Writer(width=width, height=height, bitdepth=16, greyscale=False)
writer.write(f, flow)
def readNpyFlow(filepath):
"""read numpy array from file.
filepath: file to read from
returns: numpy array
"""
return np.load(filepath)
def writeNpyFile(arr, filepath):
"""write numpy array to file.
arr: numpy array to write
filepath: file to write to
"""
np.save(filepath, arr)
def writeFlo5File(flow, filename):
with h5py.File(filename, "w") as f:
f.create_dataset("flow", data=flow, compression="gzip", compression_opts=5)
def readFlo5Flow(filename):
with h5py.File(filename, "r") as f:
if "flow" not in f.keys():
raise IOError(f"File {filename} does not have a 'flow' key. Is this a valid flo5 file?")
return f["flow"][()]
def readPfmFlow(filepath):
"""read optical flow from file stored in pfm file format as used in the FlyingThings3D (Mayer et al., 2016) dataset.
filepath: path to file where to read from
returns: flow as a numpy array with shape height x width x 2.
"""
flow = readPfmFile(filepath)
if len(flow.shape) != 3:
raise IOError(f"read pfm flow: PFM file has wrong shape (assumed to be w x h x 3): {flow.shape}")
if flow.shape[2] != 3:
raise IOError(f"read pfm flow: PFM file has wrong shape (assumed to be w x h x 3): {flow.shape}")
# remove third channel -> is all zeros
return flow[:,:,:2]
def readPfmFile(filepath):
"""
adapted from https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
"""
file = open(filepath, 'rb')
color = None
width = None
height = None
scale = None
endian = None
header = file.readline().rstrip()
if header.decode("ascii") == 'PF':
color = True
elif header.decode("ascii") == 'Pf':
color = False
else:
raise Exception('Not a PFM file.')
dim_match = re.match(r'^(\d+)\s(\d+)\s$', file.readline().decode("ascii"))
if dim_match:
width, height = list(map(int, dim_match.groups()))
else:
raise Exception('Malformed PFM header.')
scale = float(file.readline().decode("ascii").rstrip())
if scale < 0: # little-endian
endian = '<'
scale = -scale
else:
endian = '>' # big-endian
data = np.fromfile(file, endian + 'f')
shape = (height, width, 3) if color else (height, width)
data = np.reshape(data, shape)
data = np.flipud(data)
return data #, scale
def writePfmFile(image, filepath):
"""
adapted from https://lmb.informatik.uni-freiburg.de/resources/datasets/SceneFlowDatasets.en.html
"""
scale=1
file = open(filepath, 'wb')
color = None
if image.dtype.name != 'float32':
raise Exception('Image dtype must be float32.')
image = np.flipud(image)
if len(image.shape) == 3 and image.shape[2] == 3: # color image
color = True
elif len(image.shape) == 2 or len(image.shape) == 3 and image.shape[2] == 1: # greyscale
color = False
else:
raise Exception('Image must have H x W x 3, H x W x 1 or H x W dimensions.')
file.write('PF\n' if color else 'Pf\n'.encode())
file.write('%d %d\n'.encode() % (image.shape[1], image.shape[0]))
endian = image.dtype.byteorder
if endian == '<' or endian == '=' and sys.byteorder == 'little':
scale = -scale
file.write('%f\n'.encode() % scale)
image.tofile(file)
def readDispFile(filepath):
"""read disparity (or disparity change) from file. The resulting numpy array has shape height x width.
For positions where there is no groundtruth available, the value is set to np.nan.
Supports png (KITTI), npy (numpy) and pfm (FlyingThings3D) file format.
filepath: path to the flow file
returns: disparity with shape height x width
"""
if filepath.endswith(".png"):
return readPngDisp(filepath)
elif filepath.endswith(".npy"):
return readNpyFlow(filepath)
elif filepath.endswith(".pfm"):
return readPfmDisp(filepath)
elif filepath.endswith(".dsp5"):
return readDsp5Disp(filepath)
else:
raise ValueError(f"readDispFile: Unknown file format for {filepath}")
def readPngDisp(filepath):
"""read disparity from file stored in png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
filepath: path to file where to read from
returns: disparity as a numpy array with shape height x width. Invalid values are represented as np.nan
"""
# adapted from https://github.com/liruoteng/OpticalFlowToolkit
image_object = png.Reader(filename=filepath)
image_direct = image_object.asDirect()
image_data = list(image_direct[2])
(w, h) = image_direct[3]['size']
channel = len(image_data[0]) // w
if channel != 1:
raise IOError("read png disp: assumed channels to be 1!")
disp = np.zeros((h, w), dtype=np.float64)
for i in range(len(image_data)):
disp[i, :] = image_data[i][:]
disp[disp == 0] = np.nan
return disp[:, :] / 256.0
def readPfmDisp(filepath):
"""read disparity or disparity change from file stored in pfm file format as used in the FlyingThings3D (Mayer et al., 2016) dataset.
filepath: path to file where to read from
returns: disparity as a numpy array with shape height x width. Invalid values are represented as np.nan
"""
disp = readPfmFile(filepath)
if len(disp.shape) != 2:
raise IOError(f"read pfm disp: PFM file has wrong shape (assumed to be w x h): {disp.shape}")
return disp
def writePngDisp(disp, filepath):
"""write disparity to png file format as used in the KITTI 12 (Geiger et al., 2012) and KITTI 15 (Menze et al., 2015) dataset.
disp: disparity in shape height x width, invalid values should be represented as np.nan
filepath: path to file where to write to
"""
disp = 256 * disp
width = disp.shape[1]
height = disp.shape[0]
disp = np.clip(disp, 0, 2**16-1)
disp = np.nan_to_num(disp).astype(np.uint16)
disp = np.reshape(disp, (-1, width))
with open(filepath, "wb") as f:
writer = png.Writer(width=width, height=height, bitdepth=16, greyscale=True)
writer.write(f, disp)
def writeDsp5File(disp, filename):
with h5py.File(filename, "w") as f:
f.create_dataset("disparity", data=disp, compression="gzip", compression_opts=5)
def readDsp5Disp(filename):
with h5py.File(filename, "r") as f:
if "disparity" not in f.keys():
raise IOError(f"File {filename} does not have a 'disparity' key. Is this a valid dsp5 file?")
return f["disparity"][()]
def writeDispFile(disp, filepath):
"""write disparity to file. Supports png (KITTI) and npy (numpy) file format.
disp: disparity with shape height x width. Invalid values should be represented as np.nan
filepath: file path where to write the flow
"""
if not filepath:
raise ValueError("writeDispFile: empty filepath")
if len(disp.shape) != 2:
raise IOError(f"writeDispFile {filepath}: expected shape height x width but received {disp.shape}")
if disp.shape[0] > disp.shape[1]:
print(f"writeDispFile {filepath}: Warning: Are you writing an upright image? Expected shape height x width, got {disp.shape}")
if filepath.endswith(".png"):
writePngDisp(disp, filepath)
elif filepath.endswith(".npy"):
writeNpyFile(disp, filepath)
elif filepath.endswith(".dsp5"):
writeDsp5File(disp, filepath)
def readKITTIObjMap(filepath):
assert filepath.endswith(".png")
return np.asarray(Image.open(filepath)) > 0
def readKITTIIntrinsics(filepath, image=2):
assert filepath.endswith(".txt")
with open(filepath) as f:
reader = csv.reader(f, delimiter=' ')
for row in reader:
if row[0] == f'K_{image:02d}:':
K = np.array(row[1:], dtype=np.float32).reshape(3,3)
kvec = np.array([K[0,0], K[1,1], K[0,2], K[1,2]])
return kvec
def writePngMapFile(map_, filename):
Image.fromarray(map_).save(filename)