@@ -94,7 +94,7 @@ get_summary_table <- function(sid) {
94
94
summary_data <- scenario_summary %>%
95
95
filter(scenario_id == sid) %>% select(-c(results, control_descriptions))
96
96
# add pretty formatting
97
- summary_data <- mutate_at(summary_data, .funs = funs( dollar) ,
97
+ summary_data <- mutate_at(summary_data, .funs = dollar,
98
98
.vars = vars(ale_median, ale_max, ale_var, sle_mean,
99
99
sle_median, sle_max, sle_min)) %>%
100
100
mutate(mean_tc_exceedance = ifelse(is.nan(mean_tc_exceedance),
@@ -103,7 +103,7 @@ get_summary_table <- function(sid) {
103
103
mutate(mean_vuln = percent(mean_vuln))
104
104
105
105
names(summary_data) <- stringi::stri_trans_totitle(gsub("_", " ", names(summary_data)))
106
- summary_data <- summary_data %>% mutate_all(funs( as.character) ) %>%
106
+ summary_data <- summary_data %>% mutate_all(as.character) %>%
107
107
tidyr::gather(key = "Parameter", value = "Value")
108
108
summary_data
109
109
}
@@ -155,7 +155,7 @@ get_loss_distribution_table <- reactive({
155
155
156
156
loss_data <- as_tibble(scenario_data) %>%
157
157
filter(openfair_factor == "lm") %>%
158
- mutate_at(vars(min, mode, max), funs( dollar) ) %>%
158
+ mutate_at(vars(min, mode, max), dollar) %>%
159
159
select(Low = min, "Most Likely" = mode, "High" = max, "Confidence" = shape)
160
160
loss_data
161
161
})
@@ -194,7 +194,7 @@ All Scenarios Data Table
194
194
``` {r show_all_table}
195
195
DT::renderDataTable({
196
196
summary_data <- scenario_summary
197
- dat <- mutate_at(summary_data, .funs = funs( dollar) ,
197
+ dat <- mutate_at(summary_data, .funs = scales:: dollar,
198
198
.vars = vars(starts_with("ale"), starts_with("sle"))) %>%
199
199
mutate(loss_events_mean = comma(loss_events_mean)) %>%
200
200
mutate(mean_tc_exceedance = percent(mean_tc_exceedance)) %>%
0 commit comments