forked from fortran-lang/stdlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathstdlib_sorting_sort.fypp
262 lines (223 loc) · 10.4 KB
/
stdlib_sorting_sort.fypp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
#:include "common.fypp"
#:set INT_TYPES_ALT_NAME = list(zip(INT_TYPES, INT_TYPES, INT_KINDS))
#:set REAL_TYPES_ALT_NAME = list(zip(REAL_TYPES, REAL_TYPES, REAL_KINDS))
#:set STRING_TYPES_ALT_NAME = list(zip(STRING_TYPES, STRING_TYPES, STRING_KINDS))
#:set CHAR_TYPES_ALT_NAME = list(zip(["character(len=*)"], ["character(len=len(array))"], ["char"]))
#:set BITSET_TYPES_ALT_NAME = list(zip(BITSET_TYPES, BITSET_TYPES, BITSET_KINDS))
#! For better code reuse in fypp, make lists that contain the input types,
#! with each having output types and a separate name prefix for subroutines
#! This approach allows us to have the same code for all input types.
#:set IRSCB_TYPES_ALT_NAME = INT_TYPES_ALT_NAME + REAL_TYPES_ALT_NAME + STRING_TYPES_ALT_NAME + CHAR_TYPES_ALT_NAME &
& + BITSET_TYPES_ALT_NAME
#:set SIGN_NAME = ["increase", "decrease"]
#:set SIGN_TYPE = [">", "<"]
#:set SIGN_OPP_TYPE = ["<", ">"]
#:set SIGN_NAME_TYPE = list(zip(SIGN_NAME, SIGN_TYPE, SIGN_OPP_TYPE))
!! Licensing:
!!
!! This file is subjec† both to the Fortran Standard Library license, and
!! to additional licensing requirements as it contains translations of
!! other software.
!!
!! The Fortran Standard Library, including this file, is distributed under
!! the MIT license that should be included with the library's distribution.
!!
!! Copyright (c) 2021 Fortran stdlib developers
!!
!! Permission is hereby granted, free of charge, to any person obtaining a
!! copy of this software and associated documentation files (the
!! "Software"), to deal in the Software without restriction, including
!! without limitation the rights to use, copy, modify, merge, publish,
!! distribute, sublicense, and/or sellcopies of the Software, and to permit
!! persons to whom the Software is furnished to do so, subject to the
!! following conditions:
!!
!! The above copyright notice and this permission notice shall be included
!! in all copies or substantial portions of the Software.
!!
!! THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
!! OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
!! MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
!! IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
!! CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
!! TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
!! SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
!!
!! The generic subroutine, `SORT`, is substantially a
!! translation to Fortran 2008, of the `introsort` of David Musser.
!! David Musser has given permission to include a variant of `introsort`
!! in the Fortran Standard Library under the MIT license provided
!! we cite:
!!
!! Musser, D.R., “Introspective Sorting and Selection Algorithms,”
!! Software—Practice and Experience, Vol. 27(8), 983–993 (August 1997).
!!
!! as the official source of the algorithm.
submodule(stdlib_sorting) stdlib_sorting_sort
!! This submodule implements the overloaded sorting subroutine `SORT`
!! that can be used to sort four kinds of `INTEGER` arrays and three kinds
!! of `REAL` arrays. Sorting is in order of increasing value, with the worst
!! case run time performance of `O(N Ln(N))`.
!!
!! `SORT` uses the `INTROSORT` sorting algorithm of David Musser,
!! http://www.cs.rpi.edu/~musser/gp/introsort.ps. `introsort` is a hybrid
!! unstable comparison algorithm combining `quicksort`, `insertion sort`, and
!! `heap sort`. While this algorithm is always O(N Ln(N)) it is relatively
!! fast on randomly ordered data, but inconsistent in performance on partly
!! sorted data, sometimes having `merge sort` performance, sometimes having
!! better than `quicksort` performance.
implicit none
contains
#:for t1, t2, name1 in IRSCB_TYPES_ALT_NAME
pure module subroutine ${name1}$_sort( array, reverse )
${t1}$, intent(inout) :: array(0:)
logical, intent(in), optional :: reverse
if(optval(reverse, .false.))then
call ${name1}$_decrease_sort(array)
else
call ${name1}$_increase_sort(array)
endif
end subroutine ${name1}$_sort
#:endfor
#:for sname, signt, signoppt in SIGN_NAME_TYPE
#:for t1, t2, name1 in IRSCB_TYPES_ALT_NAME
pure subroutine ${name1}$_${sname}$_sort( array )
! `${name1}$_${sname}$_sort( array )` sorts the input `ARRAY` of type `${t1}$`
! using a hybrid sort based on the `introsort` of David Musser. As with
! `introsort`, `${name1}$_${sname}$_sort( array )` is an unstable hybrid comparison
! algorithm using `quicksort` for the main body of the sort tree,
! supplemented by `insertion sort` for the outer branches, but if
! `quicksort` is converging too slowly the algorithm resorts
! to `heapsort`. The algorithm is of order O(N Ln(N)) for all inputs.
! Because it relies on `quicksort`, the coefficient of the O(N Ln(N))
! behavior is typically small compared to other sorting algorithms.
${t1}$, intent(inout) :: array(0:)
integer(int32) :: depth_limit
depth_limit = 2 * int( floor( log( real( size( array, kind=int_size), &
kind=dp) ) / log(2.0_dp) ), &
kind=int32 )
call introsort(array, depth_limit)
contains
pure recursive subroutine introsort( array, depth_limit )
! It devolves to `insertionsort` if the remaining number of elements
! is fewer than or equal to `INSERT_SIZE`, `heapsort` if the completion
! of the `quicksort` is too slow as estimated from `DEPTH_LIMIT`,
! otherwise sorting is done by a `quicksort`.
${t1}$, intent(inout) :: array(0:)
integer(int32), intent(in) :: depth_limit
integer(int_size), parameter :: insert_size = 16_int_size
integer(int_size) :: index
if ( size(array, kind=int_size) <= insert_size ) then
! May be best at the end of SORT processing the whole array
! See Musser, D.R., “Introspective Sorting and Selection
! Algorithms,” Software—Practice and Experience, Vol. 27(8),
! 983–993 (August 1997).
call insertion_sort( array )
else if ( depth_limit == 0 ) then
call heap_sort( array )
else
call partition( array, index )
call introsort( array(0:index-1), depth_limit-1 )
call introsort( array(index+1:), depth_limit-1 )
end if
end subroutine introsort
pure subroutine partition( array, index )
! quicksort partition using median of three.
${t1}$, intent(inout) :: array(0:)
integer(int_size), intent(out) :: index
${t2}$ :: u, v, w, x, y
integer(int_size) :: i, j
! Determine median of three and exchange it with the end.
u = array( 0 )
v = array( size(array, kind=int_size)/2-1 )
w = array( size(array, kind=int_size)-1 )
if ( (u ${signt}$ v) .neqv. (u ${signt}$ w) ) then
x = u
y = array(0)
array(0) = array( size( array, kind=int_size ) - 1 )
array( size( array, kind=int_size ) - 1 ) = y
else if ( (v ${signoppt}$ u) .neqv. (v ${signoppt}$ w) ) then
x = v
y = array(size( array, kind=int_size )/2-1)
array( size( array, kind=int_size )/2-1 ) = &
array( size( array, kind=int_size )-1 )
array( size( array, kind=int_size )-1 ) = y
else
x = w
end if
! Partition the array.
i = -1_int_size
do j = 0_int_size, size(array, kind=int_size)-2
if ( array(j) ${signoppt}$= x ) then
i = i + 1
y = array(i)
array(i) = array(j)
array(j) = y
end if
end do
y = array(i+1)
array(i+1) = array(size(array, kind=int_size)-1)
array(size(array, kind=int_size)-1) = y
index = i + 1
end subroutine partition
pure subroutine insertion_sort( array )
! Bog standard insertion sort.
${t1}$, intent(inout) :: array(0:)
integer(int_size) :: i, j
${t2}$ :: key
do j=1_int_size, size(array, kind=int_size)-1
key = array(j)
i = j - 1
do while( i >= 0 )
if ( array(i) ${signoppt}$= key ) exit
array(i+1) = array(i)
i = i - 1
end do
array(i+1) = key
end do
end subroutine insertion_sort
pure subroutine heap_sort( array )
! A bog standard heap sort
${t1}$, intent(inout) :: array(0:)
integer(int_size) :: i, heap_size
${t2}$ :: y
heap_size = size( array, kind=int_size )
! Build the max heap
do i = (heap_size-2)/2_int_size, 0_int_size, -1_int_size
call max_heapify( array, i, heap_size )
end do
do i = heap_size-1, 1_int_size, -1_int_size
! Swap the first element with the current final element
y = array(0)
array(0) = array(i)
array(i) = y
! Sift down using max_heapify
call max_heapify( array, 0_int_size, i )
end do
end subroutine heap_sort
pure recursive subroutine max_heapify( array, i, heap_size )
! Transform the array into a max heap
${t1}$, intent(inout) :: array(0:)
integer(int_size), intent(in) :: i, heap_size
integer(int_size) :: l, r, largest
${t2}$ :: y
largest = i
l = 2_int_size * i + 1_int_size
r = l + 1_int_size
if ( l < heap_size ) then
if ( array(l) ${signt}$ array(largest) ) largest = l
end if
if ( r < heap_size ) then
if ( array(r) ${signt}$ array(largest) ) largest = r
end if
if ( largest /= i ) then
y = array(i)
array(i) = array(largest)
array(largest) = y
call max_heapify( array, largest, heap_size )
end if
end subroutine max_heapify
end subroutine ${name1}$_${sname}$_sort
#:endfor
#:endfor
end submodule stdlib_sorting_sort