-
Notifications
You must be signed in to change notification settings - Fork 47
/
Copy pathtrain_tracker_with_val.py
223 lines (182 loc) · 7.06 KB
/
train_tracker_with_val.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
"""
Author: Zhenbo Xu
Licensed under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/)
"""
import os, sys
import shutil
import time
from config import *
os.chdir(rootDir)
from matplotlib import pyplot as plt
from tqdm import tqdm
import torch
from config_mots import *
from datasets import get_dataset
from models import get_model
from utils.utils import AverageMeter, Cluster, Logger, Visualizer
from file_utils import remove_key_word
import subprocess
torch.backends.cudnn.benchmark = True
config_name = sys.argv[1]
args = eval(config_name).get_args()
if 'cudnn' in args.keys():
torch.backends.cudnn.deterministic = True
torch.backends.cudnn.benchmark = False
if args['save']:
if not os.path.exists(args['save_dir']):
os.makedirs(args['save_dir'])
if args['display']:
plt.ion()
else:
plt.ioff()
plt.switch_backend("agg")
# train dataloader
train_dataset = get_dataset(args['train_dataset']['name'], args['train_dataset']['kwargs'])
print(args['train_dataset']['kwargs'])
train_dataset_it = torch.utils.data.DataLoader(
train_dataset, batch_size=args['train_dataset']['batch_size'], shuffle=True, drop_last=True,
num_workers=args['train_dataset']['workers'], pin_memory=True if args['cuda'] else False)
# set model
model = get_model(args['model']['name'], args['model']['kwargs'])
model.init_output(args['loss_opts']['n_sigma'])
# set device
device = torch.device("cuda:0" if args['cuda'] else "cpu")
model = torch.nn.DataParallel(model).to(device)
# set optimizer
optimizer = torch.optim.Adam(
model.parameters(), lr=args['lr'], weight_decay=1e-4)
def lambda_(epoch):
return pow((1 - ((epoch) / args['n_epochs'])), 0.9)
# scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda=lambda_,)
scheduler = torch.optim.lr_scheduler.MultiStepLR(optimizer, milestones=args['milestones'], gamma=0.1)
# clustering
cluster = Cluster()
# Visualizer
visualizer = Visualizer(('image', 'pred', 'sigma', 'seed'))
# Logger
logger = Logger(('train', 'val', 'iou'), 'loss')
# resume
start_epoch = 1
best_iou = 0
best_seed = 10
if 'resume_path' in args.keys() and args['resume_path'] is not None and os.path.exists(args['resume_path']):
print('Resuming model from {}'.format(args['resume_path']))
state = torch.load(args['resume_path'])
if 'start_epoch' in args.keys():
start_epoch = args['start_epoch']
elif 'epoch' in state.keys():
start_epoch = state['epoch'] + 1
else:
start_epoch = 1
# best_iou = state['best_iou']
for kk in state.keys():
if 'state_dict' in kk:
state_dict_key = kk
break
new_state_dict = state[state_dict_key]
if not 'state_dict_keywords' in args.keys():
try:
model.load_state_dict(new_state_dict, strict=True)
except:
print('resume checkpoint with strict False')
model.load_state_dict(new_state_dict, strict=False)
else:
new_state_dict = remove_key_word(state[state_dict_key], args['state_dict_keywords'])
model.load_state_dict(new_state_dict, strict=False)
try:
logger.data = state['logger_data']
except:
pass
def train(epoch):
# define meters
loss_meter = AverageMeter()
loss_emb_meter = AverageMeter()
# put model into training mode
model.train()
for param_group in optimizer.param_groups:
print('learning rate: {}'.format(param_group['lr']))
for i, sample in enumerate(tqdm(train_dataset_it)):
points = sample['points']
xyxys = sample['xyxys']
labels = sample['labels']
emb_loss = model(points, labels, xyxys)
loss = emb_loss.mean()
if loss.item() > 0:
loss_emb_meter.update(emb_loss.mean().item())
loss_meter.update(loss.item())
optimizer.zero_grad()
loss.backward()
optimizer.step()
return loss_meter.avg, loss_emb_meter.avg
def val(epoch):
state = {
'epoch': epoch,
'best_iou': best_iou,
'best_seed': best_seed,
'model_state_dict': model.state_dict(),
'optim_state_dict': optimizer.state_dict(),
'logger_data': logger.data
}
file_name = os.path.join(args['save_dir'], 'checkpoint.pth')
torch.save(state, file_name)
val_name = args['eval_config']
runfile = "test_tracking.py"
p = subprocess.run([pythonPath, "-u", runfile,
val_name], stdout=subprocess.PIPE, cwd=rootDir)
val_args = eval(val_name).get_args()
save_val_dir = val_args['save_dir'].split('/')[1]
p = subprocess.run([pythonPath, "-u", "eval.py",
os.path.join(rootDir, save_val_dir), kittiRoot + "instances", "val.seqmap"],
stdout=subprocess.PIPE, cwd=rootDir + "datasets/mots_tools/mots_eval")
pout = p.stdout.decode("utf-8")
if 'person' in args['save_dir']:
class_str = "Evaluate class: Pedestrians"
else:
class_str = "Evaluate class: Cars"
pout = pout[pout.find(class_str):]
print(pout[pout.find('all '):][6:126].strip())
acc = pout[pout.find('all '):][6:26].strip().split(' ')[0]
return 0.0, float(acc)
def save_checkpoint(state, is_best, iou_str, is_lowest=False, name='checkpoint.pth'):
print('=> saving checkpoint')
if 'save_name' in args.keys():
file_name = os.path.join(args['save_dir'], args['save_name'])
else:
file_name = os.path.join(args['save_dir'], name)
torch.save(state, file_name)
if is_best:
shutil.copyfile(file_name, os.path.join(
args['save_dir'], 'best_iou_model.pth' + iou_str))
if is_lowest:
shutil.copyfile(file_name, os.path.join(
args['save_dir'], 'best_seed_model.pth'))
for epoch in range(start_epoch, args['n_epochs']):
print('Starting epoch {}'.format(epoch))
scheduler.step(epoch)
# if epoch == start_epoch:
# print('Initial eval')
# val_loss, val_iou = val(epoch)
# print('===> val loss: {:.4f}, val iou: {:.4f}'.format(val_loss, val_iou))
train_loss, emb_loss = train(epoch)
print('===> train loss: {:.4f}, train emb loss: {:.4f}'.format(train_loss, emb_loss))
logger.add('train', train_loss)
if 'val_interval' not in args.keys() or epoch % args['val_interval'] == 0:
val_loss, val_iou = val(epoch)
print('===> val loss: {:.4f}, val iou: {:.4f}'.format(val_loss, val_iou))
logger.add('val', val_loss)
logger.add('iou', val_iou)
# logger.plot(save=args['save'], save_dir=args['save_dir'])
is_best = val_iou > best_iou
best_iou = max(val_iou, best_iou)
if args['save']:
state = {
'epoch': epoch,
'best_iou': best_iou,
'best_seed': best_seed,
'model_state_dict': model.state_dict(),
'optim_state_dict': optimizer.state_dict(),
'logger_data': logger.data
}
for param_group in optimizer.param_groups:
lrC = str(param_group['lr'])
save_checkpoint(state, is_best, str(best_iou) + '_' + lrC, is_lowest=False)