This page provides instructions to train a LBC model.
If you find this to be useful, please also cite:
@inproceedings{chen2019lbc,
author = {Chen, Dian and Zhou, Brady and Koltun, Vladlen and Kr\"ahenb\"uhl, Philipp},
title = {Learning by Cheating},
booktitle = {Conference on Robot Learning (CoRL)},
year = {2019},
}
Note: for each stage, you can use wandb to visualize and monitor the progress.
Create the following config_lbc.yaml
file.
---
num_plan: 5
camera_x: 1.5
camera_z: 2.4
camera_yaws: [0,-30,30]
seg_channels: [4,6,7,10,18]
seg_weight: 0.05
imagenet_pretrained: True
log_wandb: True
noise_collect: False
x_jitter: 3
a_jitter: 15
crop_top: 8
crop_bottom: 8
bev_model_dir: [PATH TO PRIVILEGED MODELS]
rgb_model_dir: [PATH TO PHASE MODELS]
main_data_dir: [PATH TO DATA]
Pleaes refer to RAILS.md for instructions on data collection.
- Train the model
python lbc.train_phase0 --save-path=[PATH TO SAVE BEV MODEL]
- Edit
config_lbc.yaml
bev_model_dir: [PATH TO SAVE BEV MODEL]
- Train the model
python lbc.train_phase1
- Edit
config_lbc.yaml
bev_model_dir: [PATH TO RGB MODEL]