This repository was archived by the owner on Feb 8, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrun_preprocessing_fashion.py
286 lines (250 loc) · 10.6 KB
/
run_preprocessing_fashion.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
import pandas as pd
from tqdm import tqdm
from data.types import (
DataType,
PreprocessingConfig,
)
import torch as t
import json
from utils.labelencoder import encode_labels
from config import preprocessing_config
from utils.preprocessing import (
create_data_pyg,
create_data_dgl,
create_ids_and_maps,
extract_edges,
extract_reverse_edges,
)
from utils.constants import Constants
from data.neo4j.save import save_to_neo4j
def preprocess(config: PreprocessingConfig):
config.print()
print("| Loading customers...")
customers = pd.read_parquet("data/original/customers.parquet").fillna(0.0)
customers = customers[[c.value for c in config.customer_features] + ["customer_id"]]
print("| Loading articles...")
articles = pd.read_parquet("data/original/articles.parquet").fillna(0.0)
print("| Loading transactions...")
transactions = pd.read_parquet("data/original/transactions_splitted.parquet")
if config.data_size is not None:
transactions = transactions[: config.data_size]
transactions["year-month"] = pd.to_datetime(transactions["t_dat"]).dt.strftime(
"%Y-%m"
)
print("| Calculating average price per product...")
transactions_per_article = transactions.groupby(["article_id"]).mean()["price"]
articles = articles.merge(
transactions_per_article, on="article_id", how="outer"
).fillna(0.0)
articles = articles[[c.value for c in config.article_features] + ["article_id"]]
print("| Encoding article features...")
for column in tqdm(articles.columns):
if (
column not in config.article_non_categorical_features
and column != "article_id"
):
articles[column] = encode_labels(articles[column])
print("| Encoding customer features...")
for column in tqdm(customers.columns):
if column != "customer_id":
customers[column] = encode_labels(customers[column])
if config.filter_out_unconnected_nodes:
print("| Removing unconnected nodes...")
all_article_ids_referenced = set(transactions["article_id"].unique())
all_customer_ids_referenced = set(transactions["customer_id"].unique())
disjoint_customers = set(customers["customer_id"].unique()).difference(
all_customer_ids_referenced
)
print("| Removing {} customers...".format(len(disjoint_customers)))
disjoint_articles = set(articles["article_id"].unique()).difference(
all_article_ids_referenced
)
print("| Removing {} articles...".format(len(disjoint_articles)))
customers = customers[~customers["customer_id"].isin(disjoint_customers)]
articles = articles[~articles["article_id"].isin(disjoint_articles)]
customers, customer_id_map_forward, customer_id_map_reverse = create_ids_and_maps(
customers, "customer_id", 0
)
articles, article_id_map_forward, article_id_map_reverse = create_ids_and_maps(
articles,
"article_id",
0,
)
extra_nodes = None
extra_edges = None
if Constants.node_extra is not None:
print("| Loading extra node type...")
extra_nodes = pd.DataFrame(
articles[Constants.node_extra].unique(),
columns=[Constants.node_extra],
)
(
extra_nodes,
extra_nodes_id_map_forward,
extra_nodes_id_map_reverse,
) = create_ids_and_maps(
extra_nodes,
Constants.node_extra,
0,
)
extra_edges = articles[["article_id", Constants.node_extra]]
extra_edges[Constants.node_extra] = extra_edges[Constants.node_extra].apply(
lambda x: extra_nodes_id_map_reverse[x]
)
extra_edges["article_id"] = extra_edges["article_id"].apply(
lambda x: article_id_map_reverse[x]
)
extra_edges.rename(
columns={Constants.node_extra: f"{Constants.node_extra}_id"}, inplace=True
)
print("| Parsing transactions...")
transactions["article_id"] = transactions["article_id"].apply(
lambda x: article_id_map_reverse[x]
)
transactions["customer_id"] = transactions["customer_id"].apply(
lambda x: customer_id_map_reverse[x]
)
transactions_train = transactions[transactions["train_mask"] == True]
transactions_val = pd.concat(
[transactions_train, transactions[transactions["val_mask"] == True]], axis=0
)
transactions_test = pd.concat(
[transactions_val, transactions[transactions["test_mask"] == True]], axis=0
)
per_article_img_embedding = t.zeros((0, 512))
if config.load_image_embedding:
print("| Adding image embeddings...")
image_embeddings = t.load(
"data/derived/fashion-recommendation-image-embeddings-clip-ViT-B-32.pt"
)
for index, article in tqdm(articles.iterrows()):
per_article_img_embedding = t.cat(
(
per_article_img_embedding,
image_embeddings.get(
int(article["article_id"]), t.zeros(512)
).unsqueeze(0),
),
axis=0,
)
per_article_text_embedding = t.zeros((0, 512))
if config.load_text_embedding:
print("| Adding text embeddings...")
text_embeddings = t.load(
"data/derived/fashion-recommendation-text-embeddings-clip-ViT-B-32.pt"
)
for index, article in tqdm(articles.iterrows()):
per_article_text_embedding = t.cat(
(
per_article_text_embedding,
text_embeddings[int(article["article_id"])]
.get(config.text_embedding_colname, t.zeros(512))
.unsqueeze(0),
),
axis=0,
)
print("| Exporting per location info...")
t.save(
extract_users_per_location(customers), "data/derived/customers_per_location.pt"
)
t.save(extract_location_for_user(customers), "data/derived/location_for_user.pt")
print("| Calculating the most popular products of the month...")
print("last day:", transactions.tail(1)["t_dat"].item())
last_month = transactions.tail(1)["year-month"].item()
last_month_transactions = transactions[transactions["year-month"] == last_month]
most_popular_products = (
last_month_transactions["article_id"].value_counts().nlargest(1000)
)
t.save(most_popular_products, "data/derived/most_popular_products.pt")
print("| Removing unused columns...")
customers.drop(["customer_id"], axis=1, inplace=True)
articles.drop(["article_id"], axis=1, inplace=True)
if extra_nodes is not None:
extra_nodes.drop([Constants.node_extra], axis=1, inplace=True)
if config.save_to_neo4j:
save_to_neo4j(
customers,
articles,
transactions,
extra_nodes,
Constants.node_extra if Constants.node_extra is not None else None,
extra_edges if extra_edges is not None else None,
Constants.rel_type_extra,
)
print("| Converting to tensors...")
customers = t.tensor(customers.to_numpy(), dtype=t.long)
assert t.isnan(customers).any() == False
articles = t.tensor(articles.to_numpy(), dtype=t.long)
if config.load_image_embedding:
articles = t.cat((articles, per_article_img_embedding), axis=1)
if config.load_text_embedding:
articles = t.cat((articles, per_article_text_embedding), axis=1)
assert t.isnan(articles).any() == False
if Constants.node_extra is not None:
extra_nodes = t.tensor(extra_nodes.to_numpy(), dtype=t.long)
print("| Creating Data...")
# If we ever want to get dgl data creation back
# create_func = (
# create_data_dgl if config.data_type == DataType.dgl else create_data_pyg
# )
train_graph = create_data_pyg(
customers,
articles,
extra_nodes,
Constants.node_extra if Constants.node_extra is not None else None,
transactions_train["customer_id"].to_numpy(),
transactions_train["article_id"].to_numpy(),
extra_edges["article_id"].to_numpy() if extra_edges is not None else None,
extra_edges[f"{Constants.node_extra}_id"].to_numpy()
if extra_edges is not None
else None,
Constants.edge_key_extra,
)
val_graph = create_data_pyg(
customers,
articles,
extra_nodes,
Constants.node_extra if Constants.node_extra is not None else None,
transactions_val["customer_id"].to_numpy(),
transactions_val["article_id"].to_numpy(),
extra_edges["article_id"].to_numpy() if extra_edges is not None else None,
extra_edges[f"{Constants.node_extra}_id"].to_numpy()
if extra_edges is not None
else None,
Constants.edge_key_extra,
)
test_graph = create_data_pyg(
customers,
articles,
extra_nodes,
Constants.node_extra if Constants.node_extra is not None else None,
transactions_test["customer_id"].to_numpy(),
transactions_test["article_id"].to_numpy(),
extra_edges["article_id"].to_numpy() if extra_edges is not None else None,
extra_edges[f"{Constants.node_extra}_id"].to_numpy()
if extra_edges is not None
else None,
Constants.edge_key_extra,
)
print("| Saving the graph...")
t.save(train_graph, "data/derived/train_graph.pt")
t.save(val_graph, "data/derived/val_graph.pt")
t.save(test_graph, "data/derived/test_graph.pt")
print("| Extracting edges per customer / per article...")
t.save(extract_edges(transactions_train), "data/derived/edges_train.pt")
t.save(extract_reverse_edges(transactions_train), "data/derived/rev_edges_train.pt")
t.save(extract_edges(transactions_val), "data/derived/edges_val.pt")
t.save(extract_reverse_edges(transactions_val), "data/derived/rev_edges_val.pt")
t.save(extract_edges(transactions_test), "data/derived/edges_test.pt")
t.save(extract_reverse_edges(transactions_test), "data/derived/rev_edges_test.pt")
print("| Saving the node-to-id mapping...")
with open("data/derived/customer_id_map_forward.json", "w") as fp:
json.dump(customer_id_map_forward, fp)
with open("data/derived/article_id_map_forward.json", "w") as fp:
json.dump(article_id_map_forward, fp)
def extract_users_per_location(customers: pd.DataFrame) -> dict:
return customers.groupby("postal_code")["index"].apply(list).to_dict()
def extract_location_for_user(customers: pd.DataFrame) -> dict:
return customers["postal_code"].to_dict()
if __name__ == "__main__":
preprocess(preprocessing_config)