The library has been tested using Agda version 2.6.1.
- First instance modules
Reflection.TypeChecking.MonadSyntax
↦Reflection.TypeChecking.Monad.Syntax
-
Instance modules:
Category.Monad.Partiality.Instances Codata.Stream.Instances Codata.Covec.Instances Data.List.Instances Data.List.NonEmpty.Instances Data.Maybe.Instances Data.Vec.Instances Function.Identity.Instances
-
Symmetric transitive closures of binary relations:
Relation.Binary.Construct.Closure.SymmetricTransitive
-
Type-checking monads
Reflection.TypeChecking.Monad Reflection.TypeChecking.Monad.Categorical Reflection.TypeChecking.Monad.Instances
-
Function application in reflected terms (
Reflection.Apply
) -
Congruence helper macros in
Tactic.Cong
-
Added proofs to
Relation.Binary.PropositionalEquality
:trans-cong : trans (cong f p) (cong f q) ≡ cong f (trans p q) cong₂-reflˡ : cong₂ _∙_ refl p ≡ cong (x ∙_) p cong₂-reflʳ : cong₂ _∙_ p refl ≡ cong (_∙ u) p
-
Made first argument of
[,]-∘-distr
inData.Sum.Properties
explicit -
Added new properties to
Data.List.Relation.Binary.Permutation.Propositional.Properties
:↭-empty-inv : xs ↭ [] → xs ≡ [] ¬x∷xs↭[] : ¬ ((x ∷ xs) ↭ []) ↭-singleton-inv : xs ↭ [ x ] → xs ≡ [ x ] ↭-map-inv : map f xs ↭ ys → ∃ λ ys′ → ys ≡ map f ys′ × xs ↭ ys′ ↭-length : xs ↭ ys → length xs ≡ length ys
-
Added new proofs to ``Data.Sum.Properties`:
map-id : map id id ≗ id map₁₂-commute : map₁ f ∘ map₂ g ≗ map₂ g ∘ map₁ f [,]-cong : f ≗ f′ → g ≗ g′ → [ f , g ] ≗ [ f′ , g′ ] [-,]-cong : f ≗ f′ → [ f , g ] ≗ [ f′ , g ] [,-]-cong : g ≗ g′ → [ f , g ] ≗ [ f , g′ ] map-cong : f ≗ f′ → g ≗ g′ → map f g ≗ map f′ g′ map₁-cong : f ≗ f′ → map₁ f ≗ map₁ f′ map₂-cong : g ≗ g′ → map₂ g ≗ map₂ g′
-
Added new proofs to
Data.Maybe.Relation.Binary.Pointwise
:nothing-inv : Pointwise R nothing x → x ≡ nothing just-inv : Pointwise R (just x) y → ∃ λ z → y ≡ just z × R x z
-
New functions in
Reflection.Pattern
:pattern-size : Pattern → ℕ pattern-args-size : List (Arg Pattern) → ℕ