Skip to content

Latest commit

 

History

History
101 lines (79 loc) · 2.74 KB

CHANGELOG.md

File metadata and controls

101 lines (79 loc) · 2.74 KB

Version 1.4-dev

The library has been tested using Agda version 2.6.1.

Highlights

  • First instance modules

Bug-fixes

Non-backwards compatible changes

Deprecated modules

  • Reflection.TypeChecking.MonadSyntaxReflection.TypeChecking.Monad.Syntax

Deprecated names

Other major additions

  • Instance modules:

    Category.Monad.Partiality.Instances
    Codata.Stream.Instances
    Codata.Covec.Instances
    Data.List.Instances
    Data.List.NonEmpty.Instances
    Data.Maybe.Instances
    Data.Vec.Instances
    Function.Identity.Instances
  • Symmetric transitive closures of binary relations:

    Relation.Binary.Construct.Closure.SymmetricTransitive
    
  • Type-checking monads

    Reflection.TypeChecking.Monad
    Reflection.TypeChecking.Monad.Categorical
    Reflection.TypeChecking.Monad.Instances
    
  • Function application in reflected terms (Reflection.Apply)

  • Congruence helper macros in Tactic.Cong

Other major changes

Other minor additions

  • Added proofs to Relation.Binary.PropositionalEquality:

    trans-cong  : trans (cong f p) (cong f q) ≡ cong f (trans p q)
    cong₂-reflˡ : cong₂ _∙_ refl p ≡ cong (x ∙_) p
    cong₂-reflʳ : cong₂ _∙_ p refl ≡ cong (_∙ u) p
  • Made first argument of [,]-∘-distr in Data.Sum.Properties explicit

  • Added new properties to Data.List.Relation.Binary.Permutation.Propositional.Properties:

    ↭-empty-inv     : xs ↭ []  xs ≡ []
    ¬x∷xs↭[]        : ¬ ((x ∷ xs) ↭ [])
    ↭-singleton-inv : xs ↭ [ x ]  xs ≡ [ x ]
    ↭-map-inv       : map f xs ↭ ys λ ys′  ys ≡ map f ys′ × xs ↭ ys′
    ↭-length        : xs ↭ ys  length xs ≡ length ys
  • Added new proofs to ``Data.Sum.Properties`:

    map-id        : map id id ≗ id
    map₁₂-commute : map₁ f ∘ map₂ g ≗ map₂ g ∘ map₁ f
    [,]-cong      : f ≗ f′  g ≗ g′  [ f , g ] ≗ [ f′ , g′ ]
    [-,]-cong     : f ≗ f′  [ f , g ] ≗ [ f′ , g ]
    [,-]-cong     : g ≗ g′  [ f , g ] ≗ [ f , g′ ]
    map-cong      : f ≗ f′  g ≗ g′  map f g ≗ map f′ g′
    map₁-cong     : f ≗ f′  map₁ f ≗ map₁ f′
    map₂-cong     : g ≗ g′  map₂ g ≗ map₂ g′
  • Added new proofs to Data.Maybe.Relation.Binary.Pointwise:

    nothing-inv : Pointwise R nothing x  x ≡ nothing
    just-inv    : Pointwise R (just x) y λ z  y ≡ just z × R x z
    
  • New functions in Reflection.Pattern:

    pattern-size : Pattern pattern-args-size : List (Arg Pattern)