-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcrl_dti.py
executable file
·342 lines (179 loc) · 7.22 KB
/
crl_dti.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Aug 16 17:09:14 2019
@author: ch209389
"""
#from __future__ import division
import numpy as np
#from numpy import dot
#from dipy.core.geometry import sphere2cart
#from dipy.core.geometry import vec2vec_rotmat
#from dipy.reconst.utils import dki_design_matrix
#from scipy.special import jn
#from dipy.data import get_fnames
#from dipy.core.gradients import gradient_table
#import scipy.optimize as opt
#import pybobyqa
#from dipy.data import get_sphere
#from mpl_toolkits.mplot3d import Axes3D
#import matplotlib.pyplot as plt
#import SimpleITK as sitk
#from sklearn import linear_model
#from sklearn.linear_model import OrthogonalMatchingPursuit
#from dipy.direction.peaks import peak_directions
#import spams
#import dipy.core.sphere as dipysphere
#from tqdm import tqdm
def from_lower_triangular(D):
tensor_indices = np.array([[0, 3, 4],
[3, 1, 5],
[4, 5, 2]])
return D[..., tensor_indices]
def design_matrix(bvals, bvecs):
'''Design matrix for DTI computation'''
B = np.zeros(( len(bvals), 6))
B[:, 0] = - bvecs[:, 0] * bvecs[:, 0] * bvals
B[:, 1] = - bvecs[:, 1] * bvecs[:, 1] * bvals
B[:, 2] = - bvecs[:, 2] * bvecs[:, 2] * bvals
B[:, 3] = - 2 * bvecs[:, 0] * bvecs[:, 1] * bvals
B[:, 4] = - 2 * bvecs[:, 0] * bvecs[:, 2] * bvals
B[:, 5] = - 2 * bvecs[:, 1] * bvecs[:, 2] * bvals
return B
def rho_2_d(Rho):
'''Convert the factorization of a diffusion tensor to the tensor itself.'''
U= np.array( [ [ Rho[0] , Rho[3] , Rho[5] ] ,
[ 0 , Rho[1] , Rho[4] ] ,
[ 0 , 0 , Rho[2] ] ] )
return np.matmul(U.T, U)
def angle_between_vectors(v1, v2, modulo_pi=True):
'''Compute enalge between two vectors in 3D'''
v1 = v1 / np.linalg.norm(v1)
v2 = v2 / np.linalg.norm(v2)
if modulo_pi:
return np.arccos(np.clip(np.abs(np.dot(v1, v2)), 0, 1.0))
else:
return np.arccos(np.clip(np.dot(v1, v2), -1.0, 1.0))
def angle_between_vectors_0_90(v1, v2):
'''Compute enalge between two vectors in 3D'''
v1 = v1 / np.linalg.norm(v1)
v2 = v2 / np.linalg.norm(v2)
ang= np.arccos(np.clip(np.dot(v1, v2), -1.0, 1.0))
if ang>np.pi/2:
ang= np.pi - ang
return ang
def spherical_2_unit_vector(theta, phi):
v= np.array( [ np.sin(theta)*np.cos(phi), np.sin(theta)*np.sin(phi), np.cos(theta) ] )
return v
def angle_between_vectors_sph(r1, r2):
'''Compute enalge between two vectors in spherical 3D'''
v1= spherical_2_unit_vector(r1[0], r1[1])
v2= spherical_2_unit_vector(r2[0], r2[1])
v1 = v1 / np.linalg.norm(v1)
v2 = v2 / np.linalg.norm(v2)
return np.arccos(np.clip(np.dot(v1, v2), -1.0, 1.0))
def angle_between_vectors_cart_sph(r1, r2):
'''Compute enalge between two vectors in spherical 3D'''
v1= r1
v2= spherical_2_unit_vector(r2[0], r2[1])
v1 = v1 / np.linalg.norm(v1)
v2 = v2 / np.linalg.norm(v2)
return np.arccos(np.clip(np.dot(v1, v2), -1.0, 1.0))
def angle_between_tensors(D1, D2):
'''Compute enalge between the major eigen-vectors of two tensors'''
try:
eigenvals, eigenvecs = np.linalg.eigh(D1)
order = eigenvals.argsort()[::-1]
eigenvecs = eigenvecs[:, order]
eigenvals = eigenvals[order]
ev1_1 = eigenvecs[:,0]
eigenvals, eigenvecs = np.linalg.eigh(D2)
order = eigenvals.argsort()[::-1]
eigenvecs = eigenvecs[:, order]
eigenvals = eigenvals[order]
ev1_2 = eigenvecs[:,0]
return angle_between_vectors(ev1_1, ev1_2)
except:
return None
def fa_from_eigv(lam1, lam2, lam3):
lam_m= (lam1+lam2+lam3)/3
num= np.sqrt( (lam1- lam_m)**2 + (lam2- lam_m)**2 + (lam3- lam_m)**2 )
den= np.sqrt( lam1**2 + lam2**2 + lam3**2 )
fa= np.sqrt(3/2) * num/den
return fa
def cnls_resid(Rho, design_matrix, data, weight):
tensor= np.array([ Rho[0]**2 ,
Rho[1]**2 + Rho[3]**2 ,
Rho[2]**2 + Rho[4]**2 + Rho[5]**2,
Rho[0]*Rho[3],
Rho[0]*Rho[5],
Rho[1]*Rho[4] + Rho[3]*Rho[5] ])
y = np.exp(np.matmul(design_matrix, tensor))
residuals = data - y
residuals= weight * residuals
return residuals
def cwlls_resid(Rho, design_matrix, data, weight):
tensor= np.array([ Rho[0]**2 ,
Rho[1]**2 + Rho[3]**2 ,
Rho[2]**2 + Rho[4]**2 + Rho[5]**2,
Rho[0]*Rho[3],
Rho[0]*Rho[5],
Rho[1]*Rho[4] + Rho[3]*Rho[5] ])
y = np.matmul(design_matrix, tensor)
residuals = data - y
residuals= weight * residuals
return residuals
def nls_resid(tensor, design_matrix, data, weight):
y = np.exp(np.matmul(design_matrix, tensor))
residuals = data - y
residuals= weight * residuals
return residuals
def fa_from_tensor(my_tensor):
try:
eigenvals, eigenvecs = np.linalg.eigh(my_tensor)
order = eigenvals.argsort()[::-1]
eigenvecs = eigenvecs[:, order]
eigenvals = eigenvals[order]
ev1, ev2, ev3 = eigenvals
all_zero = (eigenvals == 0).all(axis=0)
fa = np.sqrt(0.5 * ((ev1 - ev2) ** 2 +
(ev2 - ev3) ** 2 +
(ev3 - ev1) ** 2) /
((eigenvals * eigenvals).sum(0) + all_zero))
except:
fa= 0
return fa
def cfa_from_tensor(my_tensor):
try:
eigenvals, eigenvecs = np.linalg.eigh(my_tensor)
order = eigenvals.argsort()[::-1]
eigenvecs = eigenvecs[:, order]
eigenvals = eigenvals[order]
ev1, ev2, ev3 = eigenvals
all_zero = (eigenvals == 0).all(axis=0)
fa = np.sqrt(0.5 * ((ev1 - ev2) ** 2 +
(ev2 - ev3) ** 2 +
(ev3 - ev1) ** 2) /
((eigenvals * eigenvals).sum(0) + all_zero))
cfa= np.abs( eigenvecs[:,0]*fa )
except:
fa= 0
cfa= [0,0,0]
return fa, cfa
def md_from_tensor(my_tensor):
try:
eigenvals, eigenvecs = np.linalg.eigh(my_tensor)
md= eigenvals.mean()
except:
md= 0
return md
def evals_and_evecs_from_tensor(my_tensor):
try:
eigenvals, eigenvecs = np.linalg.eigh(my_tensor)
order = eigenvals.argsort()[::-1]
eigenvecs = eigenvecs[:, order]
eigenvals = eigenvals[order]
except:
eigenvals= np.zeros(3)
eigenvecs= np.zeros( (3,3) )
return eigenvals, eigenvecs