-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathconfigtimeobj.py
175 lines (143 loc) · 6.06 KB
/
configtimeobj.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import numpy as np
import math
import logging
import jackknife
class Cfgtimeobj(object):
""" A class to handle all the objects that are indexed as
x[config][time] and provide some methods to simplify accessing the
data in nonstandard ways, such as a time slice of all configs.
"""
data = None
sums = None
average = None
def __init__(self, datadict):
self.data = datadict
self.configs = datadict.keys()
self.times = datadict[self.configs[0]].keys()
self.numconfigs = len(self.configs)
self.numtimes = len(self.times)
logging.debug("created cto with configs %d, times %d", self.numconfigs, self.numtimes)
dataitem = self[self.configs[0]][self.times[0]]
self.datatype = type(dataitem)
self.scalar = np.isscalar(dataitem)
if __debug__:
self.verify()
@classmethod
def fromDataDict(cls, datadict):
return cls(datadict)
@classmethod
def fromListTuple(cls, listtuple):
configs = list(range(len(listtuple)))
data = {}
for cfg in configs:
rawcfgdata = listtuple[cfg]
d = {}
for rawtimedata in rawcfgdata:
t = rawtimedata[0] # First element is the time
arraydata = np.asarray(tuple(rawtimedata)[1:])
d[t] = arraydata # rest is data e.g. real,imag
data[cfg] = d
return cls(data)
def verify(self):
if not __debug__:
return True
if not self.data:
raise ValueError("data obejct empty or false")
sizes = [len(v) for v in self.data.values()] # map(len, self.data.values())
if (sizes.count(sizes[0]) != len(sizes)):
raise ValueError("Object size is inconsistant")
for cfg in self.configs:
for time in self.times:
# if type(self.data[cfg][time]) != self.datatype:
# logging.error(str(type(self.data[cfg][time])))
# print self.datatype
# print type(self.data[cfg][time])
# print self.data
# raise TypeError("Not all data is the same type")
if self.data[cfg][time] is None:
raise ValueError("indexed value is none")
logging.debug("Cfg Time Object verified for consistancy")
return True
def __getitem__(self, key):
return self.data[key]
def __setitem__(self, key, value):
self.data[key] = value
def get(self, config=None, time=None):
"""The common case is if both are not none unfortunatly that
is checked last. This might mean thousands of unessisary if
checks but I think this is the most readable and readablity counts
"""
if config is None:
if time is None:
return self.data
else:
return {cfg: v[time] for cfg, v in self.data.iteritems()}
if time is None:
return self.data[config]
else:
return self.data[config][time]
def compatible(self, otherobj):
if self.configs == otherobj.configs and self.times == otherobj.times:
logging.debug("verified objects are compatible")
return True
else:
return False
def indexes(self):
return (self.configs, self.times)
def average_over_times(self):
return {config: math.fsum(self.get(config=config).values()) / float(self.numtimes)
for config in self.configs}
def average_all(self):
if not self.average:
aot = self.average_over_times()
self.average = math.fsum(aot.values()) / float(self.numconfigs)
return self.average
def average_over_configs(self):
sums = self.sum_over_configs()
return {time: sums[time] / float(self.numconfigs) for time in self.times}
def sum_over_configs(self):
if not self.sums:
self.sums = {t: math.fsum(self.get(time=t).values())
for t in self.times}
return self.sums
def jackknifed_averages(self):
sums = self.sum_over_configs()
if self.numconfigs > 1:
return {cfg: {t: (sums[t] - self.get(time=t, config=cfg)) / (self.numconfigs - 1)
for t in self.times} for cfg in self.configs}
else:
return {cfg: {t: (sums[t] - self.get(time=t, config=cfg)) for t in self.times}
for cfg in self.configs}
def jackknifed_errors(self):
jk = Cfgtimeobj.fromDataDict(self.jackknifed_averages())
aoc = self.average_over_configs()
return {t: jackknife.errorbars(aoc[t], jk.get(time=t)) for t in self.times}
def jackknifed_full_average(self):
total = self.average_all()
N = float(self.numconfigs)
Njk = float(self.numconfigs - 1)
return {cfg: (N * total - single) / Njk
for cfg, single in self.average_over_times().iteritems()}
def writefullfile(self, filename, comp=False):
outfile = open(filename, 'w')
for cfg in self.configs:
for t in self.times:
if self.datatype is type(np.array(1.0)):
value = self.get(config=cfg, time=t)[0]
if comp:
outfile.write("{!r} ({},{})\n".format(t, np.real(value), np.imag(value)))
else:
outfile.write("{!r}, {!r}\n".format(t, value))
else:
value = self.get(config=cfg, time=t)
if comp:
outfile.write("{!r} ({},{})\n".format(t, np.real(value), np.imag(value)))
else:
outfile.write("{!r}, {!r}\n".format(t, value))
outfile.close()
def writeeachconfig(self, filename):
for config in self.configs:
outfile = open(filename + '.' + str(config), 'w')
for time in self.times:
outfile.write("{!r}, {!r}\n".format(time, self.get(config=config, time=time)))
outfile.close()