-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
374 lines (324 loc) · 9.09 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
from argparse import ArgumentParser
from pathlib import Path
from typing import Optional, List
import torch
from torch import nn
from torch.optim import Adam
from torch.utils.data import DataLoader
from tqdm import tqdm
import wandb
import lpips
from datasets.fran_dataset import FRANDataset
from models.fran import FRAN
from models.patchGAN import PatchGAN
from transforms.fran_transforms import data_transforms
from utils.epochs import run_epoch
def run_training(
padding_mode: str,
lr: float,
beta1: float,
beta2: float,
weight_decay: float,
device: torch.device,
ckpts_path: Path,
run_name: str,
val_fold: int,
num_folds: int,
crop_size: int,
norm_mean: List[float],
norm_std: List[float],
jitter_brightness: float,
jitter_saturation: float,
jitter_hue: float,
jitter_contrast: float,
random_angle: float,
l1_weight: float,
lpips_weight: float,
adv_weight: float,
discr_weight: float,
discr_steps: int,
num_epochs: int,
val_every: int,
num_val: int,
batch_size: int,
val_batch_size: int,
num_workers: int,
load_ckpt: Optional[Path],
data_root: str,
):
# Create datasets
tfm_train, tfm_val = data_transforms(
crop_size=crop_size,
norm_mean=norm_mean,
norm_std=norm_std,
jitter_brightness=jitter_brightness,
jitter_saturation=jitter_saturation,
jitter_hue=jitter_hue,
jitter_contrast=jitter_contrast,
random_angle=random_angle,
)
ds_train = FRANDataset(
data_root=data_root,
is_val=False,
transform=tfm_train,
num_folds=num_folds,
val_fold=val_fold,
)
ds_val = FRANDataset(
data_root=data_root,
is_val=True,
transform=tfm_val,
num_folds=num_folds,
val_fold=val_fold,
n_subsample=40,
)
# Create data loaders
dl_train = DataLoader(
ds_train,
batch_size=batch_size,
shuffle=True,
num_workers=num_workers
)
dl_val = DataLoader(
ds_val,
batch_size=val_batch_size,
shuffle=False,
num_workers=num_workers,
)
# Create models
fran = FRAN(padding_mode)
discr = PatchGAN(in_channels=4, # RGB + age channel
padding_mode=padding_mode)
# Load checkpoint
if load_ckpt is not None:
state_dicts = torch.load(load_ckpt)
fran.load_state_dict(state_dicts['FRAN'])
discr.load_state_dict(state_dicts['PatchGAN'])
# Move models to device
fran = fran.to(device)
discr = discr.to(device)
# Define optimizer
fran_optimizer = Adam(
fran.parameters(),
lr=lr,
betas=(beta1, beta2),
weight_decay=weight_decay
)
discr_optimizer = Adam(
discr.parameters(),
lr=lr,
betas=(beta1, beta2),
weight_decay=weight_decay
)
# Loss functions
l1_loss_fn = nn.L1Loss()
lpips_loss_fn = lpips.LPIPS(net='vgg').to(device)
bce_loss_fn = nn.BCELoss()
ckpt_dir = Path(ckpts_path)
# Training loop
for epoch_idx in tqdm(range(num_epochs), leave=True):
run_epoch(
fran=fran,
discr=discr,
fran_optim=fran_optimizer,
discr_optim=discr_optimizer,
l1_loss_fn=l1_loss_fn,
lpips_loss_fn=lpips_loss_fn,
bce_loss_fn=bce_loss_fn,
l1_weight=l1_weight,
lpips_weight=lpips_weight,
adv_weight=adv_weight,
discr_weight=discr_weight,
epoch_idx=epoch_idx,
device=device,
dl_train=dl_train,
dl_val=dl_val,
discr_steps=discr_steps,
ckpt_dir=ckpt_dir,
run_name=run_name,
val_every=val_every
)
def float_list_arg_type(arg):
return [float(s.strip()) for s in arg.split(',') if len(s.strip()) > 0]
if __name__ == '__main__':
parser = ArgumentParser()
# Ckpt
parser.add_argument(
'--load_ckpt', default=None,
help='The path to load model checkpoint weights from.'
)
parser.add_argument(
'--ckpts_path', default='./ckpts',
help='The directory to save checkpoints.'
)
# Model args
parser.add_argument(
'--padding_mode', default='zeros',
help='The padding mode to use in convolutional layers.'
)
# K-Fold args
parser.add_argument(
'--num_folds', default=5,
help='The number of folds to use.',
type=int
)
parser.add_argument(
'--val_fold', default=0,
help='The index of the validation fold.',
type=int
)
# Data root
parser.add_argument(
'--data_root',
default='data/FRAN_dataset',
help='Directory of the dataset'
)
# Dataloader args
parser.add_argument(
'--batch_size',
default=8,
help='The training batch size.',
type=int
)
parser.add_argument('--val_batch_size', default=8,
help='The validation batch size.', type=int)
parser.add_argument(
'--num_workers', default=8,
help='The number of workers to use for data loading.',
type=int
)
# Optimizer args
parser.add_argument('--lr', default=0.0001,
help='The learning rate.',
type=float)
parser.add_argument('--beta1', default=0.5,
help='Coefficient used for computing running average '
'of gradient in Adam.',
type=float)
parser.add_argument('--beta2', default=0.999,
help='Coefficient used for computing running average '
'of square gradient in Adam.',
type=float)
parser.add_argument('--weight_decay', default=0,
help='The weight decay.',
type=float)
# Train args
parser.add_argument(
'--num_epochs', default=50,
help='The number of epochs to train.',
type=int
)
parser.add_argument(
'--val_every', default=1000,
help='Run validation epoch after this number of training steps.',
type=int
)
parser.add_argument(
'--num_val', default=100,
help='Run this number of validation steps in each validation epoch',
type=int
)
parser.add_argument(
'--discr_steps', default=1,
help='The number of discriminator training steps before a FRAN '
'trainig step.',
type=int
)
# Log args
parser.add_argument(
'--wandb_entity', help='Weights and Biases entity.'
)
parser.add_argument(
'--wandb_project', help='Weights and Biases project.'
)
# Device arg
parser.add_argument(
'--device',
default='cuda' if torch.cuda.is_available() else 'cpu',
help='The device (cuda/cpu) to use.'
)
# Data augmentation
parser.add_argument(
'--crop_size',
default=512,
help='Crop size to use in the data transform pipeline.',
type=int,
)
parser.add_argument(
'--jitter_brightness',
default=0,
type=float,
help='Brightness jitter'
)
parser.add_argument(
'--jitter_saturation',
default=0,
type=float,
help='Saturation jitter'
)
parser.add_argument(
'--jitter_hue',
default=0,
type=float,
help='Hue jitter'
)
parser.add_argument(
'--jitter_contrast',
default=0,
type=float,
help='Contrast jitter'
)
parser.add_argument(
'--random_angle',
default=0,
type=float,
help='Select random rotation from range (-random_angle, +random_angle)'
)
parser.add_argument(
'--norm_mean',
default=[0.5, 0.5, 0.5],
help='The mean to subtract during data normalization.',
type=float_list_arg_type,
)
parser.add_argument(
'--norm_std',
default=[0.5, 0.5, 0.5],
help='The standard deviation to divide by during data normalization.',
type=float_list_arg_type,
)
# FRAN loss term weights
parser.add_argument(
'--l1_weight',
default=1.0,
type=float,
help='Weight for the L1 loss term.'
)
parser.add_argument(
'--lpips_weight',
default=1.0,
type=float,
help='Weight for the LPIPS loss term.'
)
parser.add_argument(
'--adv_weight',
default=0.05,
type=float,
help='Weight for the adversarial loss term.'
)
# Discriminator loss weight
parser.add_argument(
'--discr_weight',
default=0.25,
type=float,
help='Multiply the sum of the discriminator losses by this factor',
)
args = parser.parse_args()
args_dict = vars(args)
wandb.init(entity=args.wandb_entity, project=args.wandb_project,
config=args_dict)
del args_dict['wandb_entity']
del args_dict['wandb_project']
run_training(
**vars(args),
run_name=wandb.run.id,
)