-
Notifications
You must be signed in to change notification settings - Fork 184
/
Copy pathstdlib_linalg_determinant.fypp
239 lines (194 loc) · 7.52 KB
/
stdlib_linalg_determinant.fypp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
#:include "common.fypp"
#:set RC_KINDS_TYPES = REAL_KINDS_TYPES + CMPLX_KINDS_TYPES
submodule (stdlib_linalg) stdlib_linalg_determinant
!! Determinant of a rectangular matrix
use stdlib_linalg_constants
use stdlib_linalg_lapack, only: getrf
use stdlib_linalg_state, only: linalg_state_type, linalg_error_handling, LINALG_ERROR, &
LINALG_INTERNAL_ERROR, LINALG_VALUE_ERROR
implicit none(type,external)
! Function interface
character(*), parameter :: this = 'determinant'
contains
! BLAS/LAPACK backends do not currently support xdp
#:for rk,rt in RC_KINDS_TYPES
#:if rk!="xdp"
pure module function stdlib_linalg_pure_${rt[0]}$${rk}$determinant(a) result(det)
!!### Summary
!! Compute determinant of a real square matrix (pure interface).
!!
!!### Description
!!
!! This function computes the determinant of a real square matrix.
!!
!! param: a Input matrix of size [m,n].
!! return: det Matrix determinant.
!!
!!### Example
!!
!!```fortran
!!
!! ${rt}$ :: matrix(3,3)
!! ${rt}$ :: determinant
!! matrix = reshape([1, 2, 3, 4, 5, 6, 7, 8, 9], [3, 3])
!! determinant = det(matrix)
!!
!!```
!> Input matrix a[m,n]
${rt}$, intent(in) :: a(:,:)
!> Matrix determinant
${rt}$ :: det
!! Local variables
type(linalg_state_type) :: err0
integer(ilp) :: m,n,info,perm,k
integer(ilp), allocatable :: ipiv(:)
${rt}$, allocatable :: amat(:,:)
! Matrix determinant size
m = size(a,1,kind=ilp)
n = size(a,2,kind=ilp)
if (m/=n .or. .not.min(m,n)>=0) then
err0 = linalg_state_type(this,LINALG_VALUE_ERROR,'invalid or non-square matrix: a=[',m,',',n,']')
det = 0.0_${rk}$
! Process output and return
call linalg_error_handling(err0)
return
end if
select case (m)
case (0)
! Empty array has determinant 1 because math
det = 1.0_${rk}$
case (1)
! Scalar input
det = a(1,1)
case default
! Find determinant from LU decomposition
! Initialize a matrix temporary
allocate(amat(m,n),source=a)
! Pivot indices
allocate(ipiv(n))
! Compute determinant from LU factorization, then calculate the
! product of all diagonal entries of the U factor.
call getrf(m,n,amat,m,ipiv,info)
select case (info)
case (0)
! Success: compute determinant
! Start with real 1.0
det = 1.0_${rk}$
perm = 0
do k=1,n
if (ipiv(k)/=k) perm = perm+1
det = det*amat(k,k)
end do
if (mod(perm,2)/=0) det = -det
case (:-1)
err0 = linalg_state_type(this,LINALG_ERROR,'invalid matrix size a=[',m,',',n,']')
case (1:)
err0 = linalg_state_type(this,LINALG_ERROR,'singular matrix')
case default
err0 = linalg_state_type(this,LINALG_INTERNAL_ERROR,'catastrophic error')
end select
deallocate(amat)
end select
! Process output and return
call linalg_error_handling(err0)
end function stdlib_linalg_pure_${rt[0]}$${rk}$determinant
module function stdlib_linalg_${rt[0]}$${rk}$determinant(a,overwrite_a,err) result(det)
!!### Summary
!! Compute determinant of a square matrix (with error control).
!!
!!### Description
!!
!! This function computes the determinant of a square matrix with error control.
!!
!! param: a Input matrix of size [m,n].
!! param: overwrite_a [optional] Flag indicating if the input matrix can be overwritten.
!! param: err State return flag.
!! return: det Matrix determinant.
!!
!!### Example
!!
!!```fortran
!!
!! ${rt}$ :: matrix(3,3)
!! ${rt}$ :: determinant
!! matrix = reshape([1, 2, 3, 4, 5, 6, 7, 8, 9], [3, 3])
!! determinant = det(matrix, err=err)
!!
!!```
!
!> Input matrix a[m,n]
${rt}$, intent(inout), target :: a(:,:)
!> [optional] Can A data be overwritten and destroyed?
logical(lk), optional, intent(in) :: overwrite_a
!> State return flag.
type(linalg_state_type), intent(out) :: err
!> Matrix determinant
${rt}$ :: det
!! Local variables
type(linalg_state_type) :: err0
integer(ilp) :: m,n,info,perm,k
integer(ilp), allocatable :: ipiv(:)
logical(lk) :: copy_a
${rt}$, pointer :: amat(:,:)
! Matrix determinant size
m = size(a,1,kind=ilp)
n = size(a,2,kind=ilp)
if (m/=n .or. .not.min(m,n)>=0) then
err0 = linalg_state_type(this,LINALG_VALUE_ERROR,'invalid or non-square matrix: a=[',m,',',n,']')
det = 0.0_${rk}$
! Process output and return
call linalg_error_handling(err0,err)
return
end if
! Can A be overwritten? By default, do not overwrite
if (present(overwrite_a)) then
copy_a = .not.overwrite_a
else
copy_a = .true._lk
endif
select case (m)
case (0)
! Empty array has determinant 1 because math
det = 1.0_${rk}$
case (1)
! Scalar input
det = a(1,1)
case default
! Find determinant from LU decomposition
! Initialize a matrix temporary
if (copy_a) then
allocate(amat, source=a)
else
amat => a
endif
! Pivot indices
allocate(ipiv(n))
! Compute determinant from LU factorization, then calculate the
! product of all diagonal entries of the U factor.
call getrf(m,n,amat,m,ipiv,info)
select case (info)
case (0)
! Success: compute determinant
! Start with real 1.0
det = 1.0_${rk}$
perm = 0
do k=1,n
if (ipiv(k)/=k) perm = perm+1
det = det*amat(k,k)
end do
if (mod(perm,2)/=0) det = -det
case (:-1)
err0 = linalg_state_type(this,LINALG_ERROR,'invalid matrix size a=[',m,',',n,']')
case (1:)
err0 = linalg_state_type(this,LINALG_ERROR,'singular matrix')
case default
err0 = linalg_state_type(this,LINALG_INTERNAL_ERROR,'catastrophic error')
end select
if (.not.copy_a) deallocate(amat)
end select
! Process output and return
call linalg_error_handling(err0,err)
end function stdlib_linalg_${rt[0]}$${rk}$determinant
#:endif
#:endfor
end submodule stdlib_linalg_determinant