23
23
24
24
#include < CGAL/assertions.h>
25
25
#include < CGAL/basic.h>
26
- #include < CGAL/triangulation_assertions .h>
26
+ #include < CGAL/assertions .h>
27
27
#include < CGAL/Unique_hash_map.h>
28
28
#include < CGAL/utility.h>
29
29
@@ -849,7 +849,7 @@ Alpha_shape_2<Dt,EACT>::initialize_interval_edge_map()
849
849
{
850
850
// both faces are infinite by definition unattached
851
851
// the edge is finite by construction
852
- CGAL_triangulation_precondition ((is_infinite (pNeighbor)
852
+ CGAL_precondition ((is_infinite (pNeighbor)
853
853
&& is_infinite (pFace)));
854
854
interval = make_triple (squared_radius (pFace, i),
855
855
Infinity,
@@ -859,7 +859,7 @@ Alpha_shape_2<Dt,EACT>::initialize_interval_edge_map()
859
859
else
860
860
{ // is_infinite(pNeighbor)
861
861
862
- CGAL_triangulation_precondition ((is_infinite (pNeighbor)
862
+ CGAL_precondition ((is_infinite (pNeighbor)
863
863
&& !is_infinite (pFace)));
864
864
if (is_attached (pFace, i))
865
865
interval = make_triple (UNDEFINED,
@@ -1109,7 +1109,7 @@ Alpha_shape_2<Dt,EACT>::update_alpha_shape_vertex_list()const {
1109
1109
// which might be infinity
1110
1110
// write the vertex
1111
1111
v = (*vertex_alpha_it).second ;
1112
- CGAL_triangulation_assertion ((classify (v) == REGULAR));
1112
+ CGAL_assertion ((classify (v) == REGULAR));
1113
1113
Alpha_shape_vertices_list.push_back (v);
1114
1114
}
1115
1115
}
@@ -1122,7 +1122,7 @@ Alpha_shape_2<Dt,EACT>::update_alpha_shape_vertex_list()const {
1122
1122
++vertex_alpha_it)
1123
1123
{
1124
1124
v = (*vertex_alpha_it).second ;
1125
- CGAL_triangulation_assertion ((classify (v) == SINGULAR));
1125
+ CGAL_assertion ((classify (v) == SINGULAR));
1126
1126
1127
1127
Alpha_shape_vertices_list.push_back (v);
1128
1128
}
@@ -1159,7 +1159,7 @@ Alpha_shape_2<Dt,EACT>::update_alpha_shape_edges_list() const
1159
1159
{
1160
1160
pInterval = &(*edge_alpha_it).first ;
1161
1161
1162
- CGAL_triangulation_assertion (pInterval->second != Infinity);
1162
+ CGAL_assertion (pInterval->second != Infinity);
1163
1163
// since this happens only for convex hull of dimension 2
1164
1164
// thus singular
1165
1165
@@ -1171,9 +1171,9 @@ Alpha_shape_2<Dt,EACT>::update_alpha_shape_edges_list() const
1171
1171
// and alpha is smaller than the upper boundary
1172
1172
// which might be infinity
1173
1173
// visualize the boundary
1174
- CGAL_triangulation_assertion ((classify ((*edge_alpha_it).second .first ,
1175
- (*edge_alpha_it).second .second )
1176
- == REGULAR));
1174
+ CGAL_assertion ((classify ((*edge_alpha_it).second .first ,
1175
+ (*edge_alpha_it).second .second )
1176
+ == REGULAR));
1177
1177
Alpha_shape_edges_list.push_back (Edge ((*edge_alpha_it).second .first ,
1178
1178
(*edge_alpha_it).second .second ));
1179
1179
}
@@ -1191,7 +1191,7 @@ Alpha_shape_2<Dt,EACT>::update_alpha_shape_edges_list() const
1191
1191
1192
1192
if (pInterval->first == UNDEFINED)
1193
1193
{
1194
- CGAL_triangulation_assertion (pInterval->second != Infinity);
1194
+ CGAL_assertion (pInterval->second != Infinity);
1195
1195
// since this happens only for convex hull of dimension 2
1196
1196
// thus singular
1197
1197
@@ -1203,9 +1203,9 @@ Alpha_shape_2<Dt,EACT>::update_alpha_shape_edges_list() const
1203
1203
// and alpha is smaller than the upper boundary
1204
1204
// which might be infinity
1205
1205
// visualize the boundary
1206
- CGAL_triangulation_assertion ((classify ((*edge_alpha_it).second .first ,
1207
- (*edge_alpha_it).second .second )
1208
- == REGULAR));
1206
+ CGAL_assertion ((classify ((*edge_alpha_it).second .first ,
1207
+ (*edge_alpha_it).second .second )
1208
+ == REGULAR));
1209
1209
Alpha_shape_edges_list.push_back (Edge ((*edge_alpha_it).second .first ,
1210
1210
(*edge_alpha_it).second .second ));
1211
1211
}
@@ -1219,12 +1219,12 @@ Alpha_shape_2<Dt,EACT>::update_alpha_shape_edges_list() const
1219
1219
// if alpha is smaller than the upper boundary
1220
1220
// which might be infinity
1221
1221
// visualize the boundary
1222
- CGAL_triangulation_assertion (((classify ((*edge_alpha_it).second .first ,
1223
- (*edge_alpha_it).second .second )
1224
- == REGULAR)
1225
- || (classify ((*edge_alpha_it).second .first ,
1222
+ CGAL_assertion (((classify ((*edge_alpha_it).second .first ,
1226
1223
(*edge_alpha_it).second .second )
1227
- == SINGULAR)));
1224
+ == REGULAR)
1225
+ || (classify ((*edge_alpha_it).second .first ,
1226
+ (*edge_alpha_it).second .second )
1227
+ == SINGULAR)));
1228
1228
Alpha_shape_edges_list.push_back (Edge ((*edge_alpha_it).second .first ,
1229
1229
(*edge_alpha_it).second .second ));
1230
1230
}
@@ -1324,7 +1324,7 @@ Alpha_shape_2<Dt,EACT>::number_of_solid_components(const Type_of_alpha& alpha) c
1324
1324
++face_it)
1325
1325
{
1326
1326
Face_handle pFace = face_it;
1327
- CGAL_triangulation_postcondition ( pFace != nullptr );
1327
+ CGAL_postcondition ( pFace != nullptr );
1328
1328
1329
1329
if (classify (pFace, alpha) == INTERIOR){
1330
1330
Data& data = marked_face_set[pFace];
@@ -1358,7 +1358,7 @@ Alpha_shape_2<Dt,EACT>::traverse(const Face_handle& pFace,
1358
1358
for (int i=0 ; i<3 ; i++)
1359
1359
{
1360
1360
pNeighbor = fh->neighbor (i);
1361
- CGAL_triangulation_assertion (pNeighbor != nullptr );
1361
+ CGAL_assertion (pNeighbor != nullptr );
1362
1362
if (classify (pNeighbor, alpha) == INTERIOR){
1363
1363
Data& data = marked_face_set[pNeighbor];
1364
1364
if (data == false ){
@@ -1514,7 +1514,7 @@ Alpha_shape_2<Dt,EACT>::op_ostream(std::ostream& os) const
1514
1514
// write the vertex
1515
1515
1516
1516
v = (*vertex_alpha_it).second ;
1517
- CGAL_triangulation_assertion ((classify (v) ==
1517
+ CGAL_assertion ((classify (v) ==
1518
1518
Alpha_shape_2<Dt,EACT>::REGULAR));
1519
1519
// if we used Edelsbrunner and Muecke's definition
1520
1520
// regular means incident to a higher-dimensional face
@@ -1536,7 +1536,7 @@ Alpha_shape_2<Dt,EACT>::op_ostream(std::ostream& os) const
1536
1536
{
1537
1537
pInterval = &(*edge_alpha_it).first ;
1538
1538
1539
- CGAL_triangulation_assertion (pInterval->second != Infinity);
1539
+ CGAL_assertion (pInterval->second != Infinity);
1540
1540
// since this happens only for convex hull of dimension 1
1541
1541
// thus singular
1542
1542
@@ -1563,11 +1563,11 @@ Alpha_shape_2<Dt,EACT>::op_ostream(std::ostream& os) const
1563
1563
f = pNeighbor;
1564
1564
}
1565
1565
1566
- CGAL_triangulation_assertion ((classify (f) ==
1567
- Alpha_shape_2<Dt,EACT>::INTERIOR));
1566
+ CGAL_assertion ((classify (f) ==
1567
+ Alpha_shape_2<Dt,EACT>::INTERIOR));
1568
1568
1569
- CGAL_triangulation_assertion ((classify (f, i) ==
1570
- Alpha_shape_2<Dt,EACT>::REGULAR));
1569
+ CGAL_assertion ((classify (f, i) ==
1570
+ Alpha_shape_2<Dt,EACT>::REGULAR));
1571
1571
1572
1572
os << V[f->vertex (f->ccw (i))] << ' '
1573
1573
<< V[f->vertex (f->cw (i))] << std::endl;
@@ -1595,8 +1595,7 @@ Alpha_shape_2<Dt,EACT>::op_ostream(std::ostream& os) const
1595
1595
// write the vertex
1596
1596
1597
1597
v = (*vertex_alpha_it).second ;
1598
- CGAL_triangulation_assertion ((classify (v) ==
1599
- Alpha_shape_2<Dt,EACT>::REGULAR));
1598
+ CGAL_assertion ((classify (v) == Alpha_shape_2<Dt,EACT>::REGULAR));
1600
1599
V[v] = number_of_vertices++;
1601
1600
os << v->point () << std::endl;
1602
1601
}
@@ -1608,8 +1607,7 @@ Alpha_shape_2<Dt,EACT>::op_ostream(std::ostream& os) const
1608
1607
++vertex_alpha_it)
1609
1608
{
1610
1609
v = (*vertex_alpha_it).second ;
1611
- CGAL_triangulation_assertion ((classify (v) ==
1612
- Alpha_shape_2<Dt,EACT>::SINGULAR));
1610
+ CGAL_assertion ((classify (v) == Alpha_shape_2<Dt,EACT>::SINGULAR));
1613
1611
1614
1612
V[v] = number_of_vertices++;
1615
1613
os << v->point () << std::endl;
@@ -1652,7 +1650,7 @@ Alpha_shape_2<Dt,EACT>::op_ostream(std::ostream& os) const
1652
1650
if (pInterval->second != Infinity &&
1653
1651
pInterval->second <= get_alpha ())
1654
1652
{
1655
- CGAL_triangulation_assertion ((classify (f, i) ==
1653
+ CGAL_assertion ((classify (f, i) ==
1656
1654
Alpha_shape_2<Dt,EACT>::REGULAR));
1657
1655
// assure that all vertices are in ccw order
1658
1656
if (classify (f) == Alpha_shape_2<Dt,EACT>::EXTERIOR)
@@ -1665,7 +1663,7 @@ Alpha_shape_2<Dt,EACT>::op_ostream(std::ostream& os) const
1665
1663
f = pNeighbor;
1666
1664
}
1667
1665
1668
- CGAL_triangulation_assertion ((classify (f) ==
1666
+ CGAL_assertion ((classify (f) ==
1669
1667
Alpha_shape_2<Dt,EACT>::INTERIOR));
1670
1668
1671
1669
os << V[f->vertex (f->ccw (i))] << ' '
@@ -1680,7 +1678,7 @@ Alpha_shape_2<Dt,EACT>::op_ostream(std::ostream& os) const
1680
1678
// write the singular edges
1681
1679
if (pInterval->first != UNDEFINED)
1682
1680
{
1683
- CGAL_triangulation_assertion ((classify (f, i) ==
1681
+ CGAL_assertion ((classify (f, i) ==
1684
1682
Alpha_shape_2<Dt,EACT>::SINGULAR));
1685
1683
os << V[f->vertex (f->ccw (i))] << ' '
1686
1684
<< V[f->vertex (f->cw (i))] << std::endl;
@@ -1739,7 +1737,7 @@ Alpha_shape_2<Dt,EACT>::Output ()
1739
1737
// which might be infinity
1740
1738
// visualize the boundary
1741
1739
1742
- CGAL_triangulation_assertion ((classify ((*edge_alpha_it).second .first ,
1740
+ CGAL_assertion ((classify ((*edge_alpha_it).second .first ,
1743
1741
(*edge_alpha_it).second .second ) ==
1744
1742
REGULAR));
1745
1743
@@ -1769,7 +1767,7 @@ Alpha_shape_2<Dt,EACT>::Output ()
1769
1767
if (pInterval->first == UNDEFINED)
1770
1768
{
1771
1769
1772
- CGAL_triangulation_assertion (pInterval->second != Infinity);
1770
+ CGAL_assertion (pInterval->second != Infinity);
1773
1771
// since this happens only for convex hull of dimension 1
1774
1772
// thus singular
1775
1773
@@ -1782,9 +1780,9 @@ Alpha_shape_2<Dt,EACT>::Output ()
1782
1780
// which might be infinity
1783
1781
// visualize the boundary
1784
1782
1785
- CGAL_triangulation_assertion ((classify ((*edge_alpha_it).second .first ,
1786
- (*edge_alpha_it).second .second ) ==
1787
- REGULAR));
1783
+ CGAL_assertion ((classify ((*edge_alpha_it).second .first ,
1784
+ (*edge_alpha_it).second .second ) ==
1785
+ REGULAR));
1788
1786
L.push_back ((this ->segment ((*edge_alpha_it).second .first ,
1789
1787
(*edge_alpha_it).second .second ))
1790
1788
.source ());
@@ -1802,12 +1800,12 @@ Alpha_shape_2<Dt,EACT>::Output ()
1802
1800
// which might be infinity
1803
1801
// visualize the boundary
1804
1802
1805
- CGAL_triangulation_assertion (((classify ((*edge_alpha_it).second .first ,
1806
- (*edge_alpha_it).second .second ) ==
1807
- REGULAR) ||
1808
- (classify ((*edge_alpha_it).second .first ,
1809
- (*edge_alpha_it).second .second ) ==
1810
- SINGULAR)));
1803
+ CGAL_assertion (((classify ((*edge_alpha_it).second .first ,
1804
+ (*edge_alpha_it).second .second ) ==
1805
+ REGULAR) ||
1806
+ (classify ((*edge_alpha_it).second .first ,
1807
+ (*edge_alpha_it).second .second ) ==
1808
+ SINGULAR)));
1811
1809
L.push_back ((this ->segment ((*edge_alpha_it).second .first ,
1812
1810
(*edge_alpha_it).second .second ))
1813
1811
.source ());
0 commit comments