Skip to content

Commit 3421d17

Browse files
committed
mamba : dedicate an input tensor for state copy indices
This makes it easier to adapt when/if token positions (and by extension, inp_K_shift) are no longer integers.
1 parent 12de5c7 commit 3421d17

File tree

1 file changed

+89
-25
lines changed

1 file changed

+89
-25
lines changed

llama.cpp

+89-25
Original file line numberDiff line numberDiff line change
@@ -1743,6 +1743,7 @@ struct llama_layer {
17431743
struct llama_kv_cell {
17441744
llama_pos pos = -1;
17451745
llama_pos delta = 0;
1746+
int32_t src = 0; // used by recurrent state models to copy states
17461747

17471748
std::set<llama_seq_id> seq_id;
17481749

@@ -1763,6 +1764,7 @@ struct llama_kv_cell {
17631764
struct llama_kv_cache {
17641765
bool has_shift = false;
17651766
bool do_defrag = false;
1767+
bool do_copy = false;
17661768
// with Mamba, a cell can hold the state for more than one past token
17671769
bool unlimited = false;
17681770

@@ -2001,7 +2003,8 @@ struct llama_context {
20012003
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
20022004
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
20032005
struct ggml_tensor * inp_cls; // I32 [n_batch]
2004-
struct ggml_tensor * inp_s_mask; // F32 [kv_size] (only used by constant state models like Mamba)
2006+
struct ggml_tensor * inp_s_copy; // I32 [kv_size]
2007+
struct ggml_tensor * inp_s_mask; // F32 [kv_size]
20052008
struct ggml_tensor * inp_s_seq; // I32 [kv_size, n_batch]
20062009

20072010
#ifdef GGML_USE_MPI
@@ -2043,9 +2046,9 @@ static bool llama_kv_cache_init(
20432046

20442047
if (cache.unlimited) {
20452048
for (uint32_t i = 0; i < cache.size; ++i) {
2046-
cache.cells[i].delta = i;
2049+
cache.cells[i].src = i;
20472050
}
2048-
} // else, delta is already initialized to zero
2051+
}
20492052

20502053
#ifdef GGML_USE_CLBLAST
20512054
offload = false;
@@ -2296,19 +2299,20 @@ static void llama_kv_cache_seq_cp(
22962299

22972300
if (cache.unlimited) {
22982301
if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
2299-
seq_id_src = cache.cells[seq_id_src].delta;
2302+
seq_id_src = cache.cells[seq_id_src].src;
23002303
GGML_ASSERT((uint32_t) seq_id_src < cache.size);
23012304
// intent to "copy from"
23022305
// supports copy chains thanks to taking the source of the source
2303-
cache.cells[seq_id_dst].delta = seq_id_src;
2306+
cache.cells[seq_id_dst].src = seq_id_src;
23042307

2305-
// prevent the destination from getting cleared if the source is not empty
2308+
// preserve the "keep or clear" status of the copied sequence
23062309
if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
23072310
cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
2311+
} else {
2312+
cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
23082313
}
2309-
// repurposed as a "need copy" flag
2310-
// (shifting can't be done anyway for this kind of KV cache)
2311-
cache.has_shift = true;
2314+
2315+
cache.do_copy = true;
23122316

23132317
cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
23142318
}
@@ -5352,6 +5356,25 @@ struct llm_build_context {
53525356
return gf;
53535357
}
53545358

5359+
struct ggml_cgraph * build_s_copy() {
5360+
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
5361+
5362+
for (int il = 0; il < n_layer; ++il) {
5363+
ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], n_embd_k_gqa, kv_self.size);
5364+
ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], n_embd_v_gqa, kv_self.size);
5365+
5366+
conv_states = ggml_get_rows(ctx0, conv_states, lctx.inp_s_copy);
5367+
ssm_states = ggml_get_rows(ctx0, ssm_states, lctx.inp_s_copy);
5368+
5369+
// TODO: name the intermediate tensors with cb()
5370+
5371+
ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
5372+
ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
5373+
}
5374+
5375+
return gf;
5376+
}
5377+
53555378
struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
53565379
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
53575380

@@ -7816,16 +7839,6 @@ struct llm_build_context {
78167839
ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], (d_conv-1)*(d_inner), kv_self.size);
78177840
ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], (d_state)*(d_inner), kv_self.size);
78187841

7819-
// do copies between states when needed (nothing to do with rope or shifts)
7820-
// TODO: do this in a another graph, a bit like build_k_shift
7821-
if (kv_self.has_shift) {
7822-
conv_states = ggml_get_rows(ctx0, conv_states, lctx.inp_K_shift);
7823-
ssm_states = ggml_get_rows(ctx0, ssm_states, lctx.inp_K_shift);
7824-
7825-
ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
7826-
ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
7827-
}
7828-
78297842
// clear states of sequences which are starting at the beginning of this batch
78307843
{
78317844
ggml_tensor * state_mask = ggml_view_2d(ctx0, lctx.inp_s_mask, 1, n_kv, lctx.inp_s_mask->nb[0], 0);
@@ -7978,6 +7991,23 @@ static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
79787991
return result;
79797992
}
79807993

7994+
static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
7995+
llama_batch dummy;
7996+
dummy.n_tokens = 0;
7997+
7998+
llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
7999+
8000+
struct llm_build_context llm(lctx, dummy, cb, false);
8001+
8002+
llm.init();
8003+
8004+
struct ggml_cgraph * result = llm.build_s_copy();
8005+
8006+
llm.free();
8007+
8008+
return result;
8009+
}
8010+
79818011
static struct ggml_cgraph * llama_build_graph(
79828012
llama_context & lctx,
79838013
const llama_batch & batch,
@@ -8113,6 +8143,18 @@ static void llama_set_k_shift(llama_context & lctx) {
81138143
}
81148144
}
81158145

8146+
static void llama_set_s_copy(llama_context & lctx) {
8147+
const int64_t kv_size = lctx.kv_self.size;
8148+
8149+
assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
8150+
8151+
int32_t * data = (int32_t *) lctx.inp_s_copy->data;
8152+
8153+
for (int i = 0; i < kv_size; ++i) {
8154+
data[i] = lctx.kv_self.cells[i].src;
8155+
}
8156+
}
8157+
81168158
static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
81178159
//
81188160
// set input data
@@ -8227,17 +8269,17 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
82278269
}
82288270

82298271
if (kv_self.unlimited) {
8230-
const int64_t n_kv = kv_self.n;
8272+
const int64_t n_kv = kv_self.n;
82318273

82328274
{
82338275
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
82348276
float * data = (float *) lctx.inp_s_mask->data;
82358277

82368278
// states which are not affected by the current batch are left untouched
82378279
for (int i = 0; i < n_kv; ++i) {
8238-
llama_seq_id seq_id = i + lctx.kv_self.head;
8239-
llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
8240-
bool has_self_seq = kv_cell.has_seq_id(seq_id);
8280+
llama_seq_id seq_id = i + lctx.kv_self.head;
8281+
llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
8282+
bool has_self_seq = kv_cell.has_seq_id(seq_id);
82418283

82428284
data[i] = (float) has_self_seq;
82438285

@@ -8739,7 +8781,27 @@ static void llama_kv_cache_update_internal(struct llama_context & lctx) {
87398781
kv_self.has_shift = false;
87408782

87418783
for (uint32_t i = 0; i < kv_self.size; ++i) {
8742-
kv_self.cells[i].delta = kv_self.unlimited ? i : 0;
8784+
kv_self.cells[i].delta = 0;
8785+
}
8786+
}
8787+
}
8788+
8789+
if (lctx.kv_self.unlimited && lctx.kv_self.do_copy) {
8790+
llama_set_s_copy(lctx);
8791+
8792+
{
8793+
ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
8794+
8795+
llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
8796+
}
8797+
8798+
{
8799+
auto & kv_self = lctx.kv_self;
8800+
8801+
kv_self.do_copy = false;
8802+
8803+
for (uint32_t i = 0; i < kv_self.size; ++i) {
8804+
kv_self.cells[i].src = i;
87438805
}
87448806
}
87458807
}
@@ -12418,7 +12480,7 @@ struct llama_context * llama_new_context_with_model(
1241812480
// graph inputs
1241912481
{
1242012482
ggml_init_params init_params = {
12421-
/* .mem_size */ ggml_tensor_overhead()*(8 + 2*(ctx->kv_self.unlimited)),
12483+
/* .mem_size */ ggml_tensor_overhead()*(8 + 3*(ctx->kv_self.unlimited)),
1242212484
/* .mem_buffer */ nullptr,
1242312485
/* .no_alloc */ true,
1242412486
};
@@ -12433,6 +12495,7 @@ struct llama_context * llama_new_context_with_model(
1243312495
ctx->inp_mean = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_batch, cparams.n_batch);
1243412496
ctx->inp_cls = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
1243512497
if (ctx->kv_self.unlimited) {
12498+
ctx->inp_s_copy = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, kv_size);
1243612499
ctx->inp_s_mask = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_F32, kv_size);
1243712500
ctx->inp_s_seq = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_I32, kv_size, cparams.n_batch);
1243812501
}
@@ -12446,6 +12509,7 @@ struct llama_context * llama_new_context_with_model(
1244612509
ggml_set_name(ctx->inp_mean, "inp_mean");
1244712510
ggml_set_name(ctx->inp_cls, "inp_cls");
1244812511
if (ctx->kv_self.unlimited) {
12512+
ggml_set_name(ctx->inp_s_copy, "inp_s_copy");
1244912513
ggml_set_name(ctx->inp_s_mask, "inp_s_mask");
1245012514
ggml_set_name(ctx->inp_s_seq, "inp_s_seq");
1245112515
}

0 commit comments

Comments
 (0)