@@ -1743,6 +1743,7 @@ struct llama_layer {
1743
1743
struct llama_kv_cell {
1744
1744
llama_pos pos = -1;
1745
1745
llama_pos delta = 0;
1746
+ int32_t src = 0; // used by recurrent state models to copy states
1746
1747
1747
1748
std::set<llama_seq_id> seq_id;
1748
1749
@@ -1763,6 +1764,7 @@ struct llama_kv_cell {
1763
1764
struct llama_kv_cache {
1764
1765
bool has_shift = false;
1765
1766
bool do_defrag = false;
1767
+ bool do_copy = false;
1766
1768
// with Mamba, a cell can hold the state for more than one past token
1767
1769
bool unlimited = false;
1768
1770
@@ -2001,7 +2003,8 @@ struct llama_context {
2001
2003
struct ggml_tensor * inp_K_shift; // I32 [kv_size]
2002
2004
struct ggml_tensor * inp_mean; // F32 [n_batch, n_batch]
2003
2005
struct ggml_tensor * inp_cls; // I32 [n_batch]
2004
- struct ggml_tensor * inp_s_mask; // F32 [kv_size] (only used by constant state models like Mamba)
2006
+ struct ggml_tensor * inp_s_copy; // I32 [kv_size]
2007
+ struct ggml_tensor * inp_s_mask; // F32 [kv_size]
2005
2008
struct ggml_tensor * inp_s_seq; // I32 [kv_size, n_batch]
2006
2009
2007
2010
#ifdef GGML_USE_MPI
@@ -2043,9 +2046,9 @@ static bool llama_kv_cache_init(
2043
2046
2044
2047
if (cache.unlimited) {
2045
2048
for (uint32_t i = 0; i < cache.size; ++i) {
2046
- cache.cells[i].delta = i;
2049
+ cache.cells[i].src = i;
2047
2050
}
2048
- } // else, delta is already initialized to zero
2051
+ }
2049
2052
2050
2053
#ifdef GGML_USE_CLBLAST
2051
2054
offload = false;
@@ -2296,19 +2299,20 @@ static void llama_kv_cache_seq_cp(
2296
2299
2297
2300
if (cache.unlimited) {
2298
2301
if ((uint32_t) seq_id_dst < cache.size && (uint32_t) seq_id_src < cache.size) {
2299
- seq_id_src = cache.cells[seq_id_src].delta ;
2302
+ seq_id_src = cache.cells[seq_id_src].src ;
2300
2303
GGML_ASSERT((uint32_t) seq_id_src < cache.size);
2301
2304
// intent to "copy from"
2302
2305
// supports copy chains thanks to taking the source of the source
2303
- cache.cells[seq_id_dst].delta = seq_id_src;
2306
+ cache.cells[seq_id_dst].src = seq_id_src;
2304
2307
2305
- // prevent the destination from getting cleared if the source is not empty
2308
+ // preserve the "keep or clear" status of the copied sequence
2306
2309
if (cache.cells[seq_id_src].has_seq_id(seq_id_src)) {
2307
2310
cache.cells[seq_id_dst].seq_id.insert(seq_id_dst);
2311
+ } else {
2312
+ cache.cells[seq_id_dst].seq_id.erase(seq_id_dst);
2308
2313
}
2309
- // repurposed as a "need copy" flag
2310
- // (shifting can't be done anyway for this kind of KV cache)
2311
- cache.has_shift = true;
2314
+
2315
+ cache.do_copy = true;
2312
2316
2313
2317
cache.cells[seq_id_dst].pos = cache.cells[seq_id_src].pos;
2314
2318
}
@@ -5352,6 +5356,25 @@ struct llm_build_context {
5352
5356
return gf;
5353
5357
}
5354
5358
5359
+ struct ggml_cgraph * build_s_copy() {
5360
+ struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
5361
+
5362
+ for (int il = 0; il < n_layer; ++il) {
5363
+ ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], n_embd_k_gqa, kv_self.size);
5364
+ ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], n_embd_v_gqa, kv_self.size);
5365
+
5366
+ conv_states = ggml_get_rows(ctx0, conv_states, lctx.inp_s_copy);
5367
+ ssm_states = ggml_get_rows(ctx0, ssm_states, lctx.inp_s_copy);
5368
+
5369
+ // TODO: name the intermediate tensors with cb()
5370
+
5371
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
5372
+ ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
5373
+ }
5374
+
5375
+ return gf;
5376
+ }
5377
+
5355
5378
struct ggml_cgraph * build_defrag(const std::vector<uint32_t> & ids) {
5356
5379
struct ggml_cgraph * gf = ggml_new_graph_custom(ctx0, LLAMA_MAX_NODES, false);
5357
5380
@@ -7816,16 +7839,6 @@ struct llm_build_context {
7816
7839
ggml_tensor * conv_states = ggml_reshape_2d(ctx0, kv_self.k_l[il], (d_conv-1)*(d_inner), kv_self.size);
7817
7840
ggml_tensor * ssm_states = ggml_reshape_2d(ctx0, kv_self.v_l[il], (d_state)*(d_inner), kv_self.size);
7818
7841
7819
- // do copies between states when needed (nothing to do with rope or shifts)
7820
- // TODO: do this in a another graph, a bit like build_k_shift
7821
- if (kv_self.has_shift) {
7822
- conv_states = ggml_get_rows(ctx0, conv_states, lctx.inp_K_shift);
7823
- ssm_states = ggml_get_rows(ctx0, ssm_states, lctx.inp_K_shift);
7824
-
7825
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, conv_states, kv_self.k_l[il]));
7826
- ggml_build_forward_expand(gf, ggml_cpy(ctx0, ssm_states, kv_self.v_l[il]));
7827
- }
7828
-
7829
7842
// clear states of sequences which are starting at the beginning of this batch
7830
7843
{
7831
7844
ggml_tensor * state_mask = ggml_view_2d(ctx0, lctx.inp_s_mask, 1, n_kv, lctx.inp_s_mask->nb[0], 0);
@@ -7978,6 +7991,23 @@ static struct ggml_cgraph * llama_build_graph_k_shift(llama_context & lctx) {
7978
7991
return result;
7979
7992
}
7980
7993
7994
+ static struct ggml_cgraph * llama_build_graph_s_copy(llama_context & lctx) {
7995
+ llama_batch dummy;
7996
+ dummy.n_tokens = 0;
7997
+
7998
+ llm_build_cb cb = [&](struct ggml_tensor * , const char * , int ) { };
7999
+
8000
+ struct llm_build_context llm(lctx, dummy, cb, false);
8001
+
8002
+ llm.init();
8003
+
8004
+ struct ggml_cgraph * result = llm.build_s_copy();
8005
+
8006
+ llm.free();
8007
+
8008
+ return result;
8009
+ }
8010
+
7981
8011
static struct ggml_cgraph * llama_build_graph(
7982
8012
llama_context & lctx,
7983
8013
const llama_batch & batch,
@@ -8113,6 +8143,18 @@ static void llama_set_k_shift(llama_context & lctx) {
8113
8143
}
8114
8144
}
8115
8145
8146
+ static void llama_set_s_copy(llama_context & lctx) {
8147
+ const int64_t kv_size = lctx.kv_self.size;
8148
+
8149
+ assert(ggml_backend_buffer_is_host(lctx.inp_s_copy->buffer));
8150
+
8151
+ int32_t * data = (int32_t *) lctx.inp_s_copy->data;
8152
+
8153
+ for (int i = 0; i < kv_size; ++i) {
8154
+ data[i] = lctx.kv_self.cells[i].src;
8155
+ }
8156
+ }
8157
+
8116
8158
static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
8117
8159
//
8118
8160
// set input data
@@ -8227,17 +8269,17 @@ static void llama_set_inputs(llama_context & lctx, const llama_batch & batch) {
8227
8269
}
8228
8270
8229
8271
if (kv_self.unlimited) {
8230
- const int64_t n_kv = kv_self.n;
8272
+ const int64_t n_kv = kv_self.n;
8231
8273
8232
8274
{
8233
8275
GGML_ASSERT(ggml_backend_buffer_is_host(lctx.inp_s_mask->buffer));
8234
8276
float * data = (float *) lctx.inp_s_mask->data;
8235
8277
8236
8278
// states which are not affected by the current batch are left untouched
8237
8279
for (int i = 0; i < n_kv; ++i) {
8238
- llama_seq_id seq_id = i + lctx.kv_self.head;
8239
- llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
8240
- bool has_self_seq = kv_cell.has_seq_id(seq_id);
8280
+ llama_seq_id seq_id = i + lctx.kv_self.head;
8281
+ llama_kv_cell & kv_cell = lctx.kv_self.cells[seq_id];
8282
+ bool has_self_seq = kv_cell.has_seq_id(seq_id);
8241
8283
8242
8284
data[i] = (float) has_self_seq;
8243
8285
@@ -8739,7 +8781,27 @@ static void llama_kv_cache_update_internal(struct llama_context & lctx) {
8739
8781
kv_self.has_shift = false;
8740
8782
8741
8783
for (uint32_t i = 0; i < kv_self.size; ++i) {
8742
- kv_self.cells[i].delta = kv_self.unlimited ? i : 0;
8784
+ kv_self.cells[i].delta = 0;
8785
+ }
8786
+ }
8787
+ }
8788
+
8789
+ if (lctx.kv_self.unlimited && lctx.kv_self.do_copy) {
8790
+ llama_set_s_copy(lctx);
8791
+
8792
+ {
8793
+ ggml_cgraph * gf = llama_build_graph_s_copy(lctx);
8794
+
8795
+ llama_graph_compute(lctx, gf, lctx.cparams.n_threads);
8796
+ }
8797
+
8798
+ {
8799
+ auto & kv_self = lctx.kv_self;
8800
+
8801
+ kv_self.do_copy = false;
8802
+
8803
+ for (uint32_t i = 0; i < kv_self.size; ++i) {
8804
+ kv_self.cells[i].src = i;
8743
8805
}
8744
8806
}
8745
8807
}
@@ -12418,7 +12480,7 @@ struct llama_context * llama_new_context_with_model(
12418
12480
// graph inputs
12419
12481
{
12420
12482
ggml_init_params init_params = {
12421
- /* .mem_size */ ggml_tensor_overhead()*(8 + 2 *(ctx->kv_self.unlimited)),
12483
+ /* .mem_size */ ggml_tensor_overhead()*(8 + 3 *(ctx->kv_self.unlimited)),
12422
12484
/* .mem_buffer */ nullptr,
12423
12485
/* .no_alloc */ true,
12424
12486
};
@@ -12433,6 +12495,7 @@ struct llama_context * llama_new_context_with_model(
12433
12495
ctx->inp_mean = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_F32, cparams.n_batch, cparams.n_batch);
12434
12496
ctx->inp_cls = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, cparams.n_batch);
12435
12497
if (ctx->kv_self.unlimited) {
12498
+ ctx->inp_s_copy = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_I32, kv_size);
12436
12499
ctx->inp_s_mask = ggml_new_tensor_1d(ctx->ctx_input, GGML_TYPE_F32, kv_size);
12437
12500
ctx->inp_s_seq = ggml_new_tensor_2d(ctx->ctx_input, GGML_TYPE_I32, kv_size, cparams.n_batch);
12438
12501
}
@@ -12446,6 +12509,7 @@ struct llama_context * llama_new_context_with_model(
12446
12509
ggml_set_name(ctx->inp_mean, "inp_mean");
12447
12510
ggml_set_name(ctx->inp_cls, "inp_cls");
12448
12511
if (ctx->kv_self.unlimited) {
12512
+ ggml_set_name(ctx->inp_s_copy, "inp_s_copy");
12449
12513
ggml_set_name(ctx->inp_s_mask, "inp_s_mask");
12450
12514
ggml_set_name(ctx->inp_s_seq, "inp_s_seq");
12451
12515
}
0 commit comments