-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathactor_critic.py
215 lines (166 loc) · 5.91 KB
/
actor_critic.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
# actor critic
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
from torch.distributions import Categorical
from tensorboardX import SummaryWriter
from init import weight_init
# Hyperparameters
LEARNING_RATE = 0.001
GAMMA = 0.98
FEATURE_SIZE = 90
class ActorCritic(nn.Module):
def __init__(self, writer=None):
super(ActorCritic, self).__init__()
self.data = []
self.fc1 = nn.Linear(FEATURE_SIZE, 64)
self.ln1 = nn.LayerNorm(64)
self.fc_pi = nn.Linear(64, 3)
self.fc_pi_amount = nn.Linear(64, 3)
self.fc_v = nn.Linear(64, 1)
self.optimizer = optim.Adam(self.parameters(), lr=LEARNING_RATE)
self.writer = writer
self.global_i = 0
def pi(self, x):
x = x.view(-1, FEATURE_SIZE)
x = F.relu(self.ln1(self.fc1(x)))
x = self.fc_pi(x)
action = F.softmax(x, dim=1)
return action
def v(self, x):
x = x.view(-1, FEATURE_SIZE)
x = F.relu(self.ln1(self.fc1(x)))
v = self.fc_v(x)
return v
def put_data(self, transition):
self.data.append(transition)
def make_batch(self):
(s_lst, a_lst, r_lst,
s_prime_lst, prob_a_lst,
done_lst) = [], [], [], [], [], []
for transition in self.data:
s, a, r, s_prime, prob_a, done = transition
s_lst.append(s)
a_lst.append([a])
r_lst.append([r])
s_prime_lst.append(s_prime)
prob_a_lst.append([prob_a])
done_mask = 0 if done else 1
done_lst.append([done_mask])
(s, a, r,
s_prime, done_mask,
prob_a) = (torch.tensor(s_lst, dtype=torch.float).cuda(),
torch.tensor(a_lst).cuda(),
torch.tensor(r_lst).cuda(),
torch.tensor(s_prime_lst, dtype=torch.float).cuda(),
torch.tensor(done_lst, dtype=torch.float).cuda(),
torch.tensor(prob_a_lst).cuda())
self.data = []
return s, a, r, s_prime, done_mask, prob_a
def train_net(self):
s, a, r, s_prime, done_mask, prob_a = self.make_batch()
td_target = r + GAMMA * self.v(s_prime) * done_mask
delta = td_target - self.v(s)
pi = self.pi(s)
pi_a = pi.gather(1, a)
policy_loss = -torch.log(pi_a) * delta.detach()
td_error = F.smooth_l1_loss(self.v(s), td_target.detach())
loss = policy_loss + td_error
if self.writer:
writer.add_scalar('loss', loss.mean().item(), self.global_i)
writer.add_scalar('td_error', td_error.mean().item(), self.global_i)
writer.add_scalar('policy_loss', policy_loss.mean().item(), self.global_i)
self.optimizer.zero_grad()
loss.mean().backward()
self.optimizer.step()
self.global_i += 1
if __name__ == '__main__':
from stable_baselines.common.vec_env import DummyVecEnv
from env.CryptoTradingEnvAllIn2 import CryptoTradingEnvAllIn2
from preparer import TickerDataFramePreparer
import pandas as pd
# Load data
df = pd.read_csv('./data/upbit-btckrw-1m.csv', index_col=['timestamp'], parse_dates=['timestamp'])
df = df.sort_values('timestamp')
df = TickerDataFramePreparer(
window='15m',
).prepare(df)
total = len(df)
train_ratio = 0.6
n_train = int(total * train_ratio)
train_df = df.iloc[:n_train].reset_index()
test_df = df.iloc[n_train:].reset_index()
# Make Env
train_env = DummyVecEnv([lambda: CryptoTradingEnvAllIn2(train_df)])
test_env = DummyVecEnv([lambda: CryptoTradingEnvAllIn2(test_df)])
# writer
writer = SummaryWriter("./tensorboard/20190617/actor_critic")
model = ActorCritic(writer)
model = model.cuda()
model.apply(weight_init)
print_interval = 1
n_epi = 1000
n_batch = 15
n_rollout = 64
for n_epi in range(n_epi):
s = train_env.reset()
done = False
score = 0.0
for i in range(n_batch):
for t in range(n_rollout):
s_tensor = torch.from_numpy(s).float().cuda()
prob = model.pi(s_tensor)
prob = prob.view(-1)
m = Categorical(prob)
action = m.sample().item()
a = [action]
s_prime, r, done, info = train_env.step(a)
s, s_prime, r, done = s[0], s_prime[0], r[0], done[0]
model.put_data(
(s, action, r, s_prime, prob[action].item(), done))
s = np.array([s_prime])
score += r
if done:
break
model.train_net()
if n_epi % print_interval == 0 and n_epi != 0:
print("# of episode :{}, avg score : {:.1f}".format(
n_epi, (score/print_interval).item()))
score = 0.0
model.eval()
# validation
train_env.reset()
train_env.current_step = 0
obs, _, _, _ = train_env.step([2])
prob_list = []
while True:
obs = torch.from_numpy(obs).cuda()
prob = model.pi(s_tensor)
prob = prob.view(-1)
# m = Categorical(prob)
# action = m.sample().item()
prob_list.append(prob.detach().cpu().tolist())
action = prob.argmax().item()
a = [action]
obs, r, done, info = train_env.step(a)
if done:
break
train_env.render()
np.array(prob_list).mean(axis=0)
test_env.reset()
test_env.current_step = 0
obs, _, _, _ = train_env.step([2])
while True:
obs = torch.from_numpy(obs).cuda()
prob = model.pi(s_tensor)
prob = prob.view(-1)
m = Categorical(prob)
action = m.sample().item()
a = [action]
obs, r, done, info = test_env.step(a)
if done:
break
test_env.render()
torch.save(model, "./ckpts/test.torch")