Skip to content

Latest commit

 

History

History
120 lines (85 loc) · 3.65 KB

File metadata and controls

120 lines (85 loc) · 3.65 KB

English Version

题目描述

给你两个整数 x 和 y ,表示你在一个笛卡尔坐标系下的 (x, y) 处。同时,在同一个坐标系下给你一个数组 points ,其中 points[i] = [ai, bi] 表示在 (ai, bi) 处有一个点。当一个点与你所在的位置有相同的 x 坐标或者相同的 y 坐标时,我们称这个点是 有效的 。

请返回距离你当前位置 曼哈顿距离 最近的 有效 点的下标(下标从 0 开始)。如果有多个最近的有效点,请返回下标 最小 的一个。如果没有有效点,请返回 -1 。

两个点 (x1, y1) 和 (x2, y2) 之间的 曼哈顿距离 为 abs(x1 - x2) + abs(y1 - y2) 。

 

示例 1:

输入:x = 3, y = 4, points = [[1,2],[3,1],[2,4],[2,3],[4,4]]
输出:2
解释:所有点中,[3,1],[2,4] 和 [4,4] 是有效点。有效点中,[2,4] 和 [4,4] 距离你当前位置的曼哈顿距离最小,都为 1 。[2,4] 的下标最小,所以返回 2 。

示例 2:

输入:x = 3, y = 4, points = [[3,4]]
输出:0
提示:答案可以与你当前所在位置坐标相同。

示例 3:

输入:x = 3, y = 4, points = [[2,3]]
输出:-1
解释:没有 有效点。

 

提示:

  • 1 <= points.length <= 104
  • points[i].length == 2
  • 1 <= x, y, ai, bi <= 104

解法

Python3

Java

TypeScript

function nearestValidPoint(x: number, y: number, points: number[][]): number {
    let res = -1;
    let midDif = Infinity;
    points.forEach(([px, py], i) => {
        if (px != x && py != y) {
            return;
        }
        const dif = Math.abs(px - x) + Math.abs(py - y);
        if (dif < midDif) {
            midDif = dif;
            res = i;
        }
    });
    return res;
}

Rust

impl Solution {
    pub fn nearest_valid_point(x: i32, y: i32, points: Vec<Vec<i32>>) -> i32 {
        let n = points.len();
        let mut min_dif = i32::MAX;
        let mut res = -1;
        for i in 0..n {
            let (p_x, p_y) = (points[i][0], points[i][1]);
            if p_x != x && p_y != y {
                continue;
            }
            let dif = (p_x - x).abs() + (p_y - y).abs();
            if dif < min_dif {
                min_dif = dif;
                res = i as i32;
            }
        }
        res
    }
}

...