# [面试题 04.08. 首个共同祖先](https://leetcode.cn/problems/first-common-ancestor-lcci) [English Version](/lcci/04.08.First%20Common%20Ancestor/README_EN.md) ## 题目描述 <!-- 这里写题目描述 --> <p>设计并实现一个算法,找出二叉树中某两个节点的第一个共同祖先。不得将其他的节点存储在另外的数据结构中。注意:这不一定是二叉搜索树。</p><p>例如,给定如下二叉树: root = [3,5,1,6,2,0,8,null,null,7,4]</p><pre> 3<br> / \<br> 5 1<br> / \ / \<br>6 2 0 8<br> / \<br> 7 4<br></pre><strong>示例 1:</strong><pre><strong>输入:</strong> root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 1<br><strong>输入:</strong> 3<br><strong>解释:</strong> 节点 5 和节点 1 的最近公共祖先是节点 3。</pre><strong>示例 2:</strong><pre><strong>输入:</strong> root = [3,5,1,6,2,0,8,null,null,7,4], p = 5, q = 4<br><strong>输出:</strong> 5<br><strong>解释:</strong> 节点 5 和节点 4 的最近公共祖先是节点 5。因为根据定义最近公共祖先节点可以为节点本身。</pre><strong>说明:</strong><pre>所有节点的值都是唯一的。<br>p、q 为不同节点且均存在于给定的二叉树中。</pre> ## 解法 <!-- 这里可写通用的实现逻辑 --> <!-- tabs:start --> ### **Python3** <!-- 这里可写当前语言的特殊实现逻辑 --> ```python # Definition for a binary tree node. # class TreeNode: # def __init__(self, x): # self.val = x # self.left = None # self.right = None class Solution: def lowestCommonAncestor(self, root: TreeNode, p: TreeNode, q: TreeNode) -> TreeNode: if root is None or root == p or root == q: return root left = self.lowestCommonAncestor(root.left, p, q) right = self.lowestCommonAncestor(root.right, p, q) return right if left is None else (left if right is None else root) ``` ### **Java** <!-- 这里可写当前语言的特殊实现逻辑 --> ```java /** * Definition for a binary tree node. * public class TreeNode { * int val; * TreeNode left; * TreeNode right; * TreeNode(int x) { val = x; } * } */ class Solution { public TreeNode lowestCommonAncestor(TreeNode root, TreeNode p, TreeNode q) { if (root == null || root == p || root == q) { return root; } TreeNode left = lowestCommonAncestor(root.left, p, q); TreeNode right = lowestCommonAncestor(root.right, p, q); return left == null ? right : (right == null ? left : root); } } ``` ### **...** ``` ``` <!-- tabs:end -->