-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhelper.py
240 lines (180 loc) · 7.81 KB
/
helper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import torch
import numpy as np
from torch import nn
from torch import optim
from torch.autograd import Variable
from torchvision import datasets, transforms, models
from collections import OrderedDict
from PIL import Image
def process_image(image):
''' Scales, crops, and normalizes a PIL image for a PyTorch model,
returns an Numpy array
'''
width, height = image.size
short = width if width < height else height
long = height if height > width else width
new_short, new_long = 256, int(256/short*long)
im = image.resize((new_short, new_long))
left, top = (new_short - 224) / 2, (new_long - 224) / 2
area = (left, top, 224+left, 224+top)
img_new = im.crop(area)
np_img = np.array(img_new)
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
np_img = (np_img / 255 - mean) / std
image = np.transpose(np_img, (2, 0, 1))
return image.astype(np.float32)
def get_dataloders(data_dir):
train_dir = data_dir + '/train'
valid_dir = data_dir + '/valid'
test_dir = data_dir + '/test'
data_transforms = {
'training': transforms.Compose([transforms.RandomRotation(30),
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])]),
'validating': transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])]),
'testing': transforms.Compose([transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406],
[0.229, 0.224, 0.225])])
}
image_datasets = {
'training': datasets.ImageFolder(train_dir, transform=data_transforms['training']),
'validating': datasets.ImageFolder(valid_dir, transform=data_transforms['validating']),
'testing': datasets.ImageFolder(test_dir, transform=data_transforms['testing'])
}
dataloaders = {
'training': torch.utils.data.DataLoader(image_datasets['training'], batch_size=64, shuffle=True),
'validating': torch.utils.data.DataLoader(image_datasets['validating'], batch_size=64, shuffle=True),
'testing': torch.utils.data.DataLoader(image_datasets['testing'], batch_size=30, shuffle=False)
}
class_to_idx = image_datasets['training'].class_to_idx
return dataloaders, class_to_idx
def model_config(struc, hidden_units):
if struc == 'densenet121':
model = models.densenet121(pretrained=True)
classifier_input_size = model.classifier.in_features
elif struc == 'vgg16':
model = models.vgg16(pretrained=True)
classifier_input_size = model.classifier[0].in_features
else:
raise RuntimeError("invalid model")
# Freeze parameters so we don't backprop through them
for param in model.parameters():
param.requires_grad = False
classifier_output_size = 102
classifier = nn.Sequential(OrderedDict([
('fc1', nn.Linear(classifier_input_size, hidden_units)),
('relu', nn.ReLU()),
('fc2', nn.Linear(hidden_units, classifier_output_size)),
('output', nn.LogSoftmax(dim=1))
]))
model.classifier = classifier
return model
def model_create(struc, learning_rate, hidden_units, class_to_idx):
# Load model
model = model_config(struc, hidden_units)
criterion = nn.NLLLoss()
optimizer = optim.Adam(model.classifier.parameters(), lr=0.001)
optimizer.zero_grad()
# Save class to index mapping
model.class_to_idx = class_to_idx
return model, optimizer, criterion
def save_checkpoint(file, model, optimizer, struc, learning_rate, epochs):
checkpoint = {'input_size': 1024,
'architectures': 'densenet121',
'learing_rate': learning_rate,
'optimizer': optimizer.state_dict(),
'class_to_idx': model.class_to_idx,
'output_size': 102,
'epochs': epochs,
'arch': 'densenet121',
'state_dict': model.state_dict(),
}
torch.save(checkpoint, file)
def load_checkpoint(file):
checkpoint = torch.load(file)
class_to_idx = checkpoint['class_to_idx']
learning_rate = checkpoint['learing_rate']
model, optimizer, criterion = model_create('densenet121',learning_rate, 500, class_to_idx)
model.load_state_dict(checkpoint['state_dict'])
model.optimizer = checkpoint['optimizer']
model.epochs = checkpoint['epochs']
if torch.cuda.is_available():
model.cuda()
criterion.cuda()
return model
# Do validation on the test set
def validation(model, dataloaders, criterion):
correct = 0
total = 0
model.eval() # turn off dropout
with torch.no_grad():
for data in dataloaders:
images, labels = data
gpu = torch.cuda.is_available()
if gpu:
images = Variable(images.float().cuda())
labels = Variable(labels.long().cuda())
else:
images = Variable(images, volatile=True)
labels = Variable(labels, volatile=True)
outputs = model.forward(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
# validation(model, dataloaders['testing'], criterion)
def train(model, trainloader, epochs, print_every, criterion, optimizer, device='cpu'):
epochs = epochs
print_every = print_every
steps = 0
# change to cuda
model.to('cuda')
for e in range(epochs):
running_loss = 0
for ii, (inputs, labels) in enumerate(trainloader):
steps += 1
inputs, labels = inputs.to('cuda'), labels.to('cuda')
optimizer.zero_grad()
# Forward and backward passes
outputs = model.forward(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
if steps % print_every == 0:
print("Epoch: {}/{}... ".format(e+1, epochs),
"Loss: {:.4f}".format(running_loss/print_every))
running_loss = 0
def predict(image_path, model, gpu, topk=5):
''' Predict the class (or classes) of an image using a trained deep learning model.
'''
gpu = torch.cuda.is_available()
image = Image.open(image_path)
np_image = process_image(image)
model.eval()
tensor_image = torch.from_numpy(np_image)
if gpu:
tensor_image = Variable(tensor_image.float().cuda())
else:
tensor_image = Variable(tensor_image)
tensor_image = tensor_image.unsqueeze(0)
output = model.forward(tensor_image)
ps = torch.exp(output).data.topk(topk)
probs = ps[0].cpu() if gpu else ps[0]
classes = ps[1].cpu() if gpu else ps[1]
inverted_class_to_idx = {
model.class_to_idx[c]: c for c in model.class_to_idx}
mapped_classes = list(
inverted_class_to_idx[label] for label in classes.numpy()[0]
)
return probs.numpy()[0], mapped_classes