|
80 | 80 | },
|
81 | 81 | {
|
82 | 82 | "cell_type": "code",
|
83 |
| - "execution_count": 4, |
| 83 | + "execution_count": 5, |
84 | 84 | "metadata": {},
|
85 | 85 | "outputs": [
|
86 | 86 | {
|
|
90 | 90 | "C:\\Users\\heman\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.8_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python38\\site-packages\\trendmaster\\trainer.py:111: UserWarning: Creating a tensor from a list of numpy.ndarrays is extremely slow. Please consider converting the list to a single numpy.ndarray with numpy.array() before converting to a tensor. (Triggered internally at C:\\actions-runner\\_work\\pytorch\\pytorch\\builder\\windows\\pytorch\\torch\\csrc\\utils\\tensor_new.cpp:210.)\n",
|
91 | 91 | " inputs = torch.FloatTensor([item[0] for item in batch]).to(self.device)\n",
|
92 | 92 | "C:\\Users\\heman\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.8_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python38\\site-packages\\torch\\nn\\modules\\loss.py:529: UserWarning: Using a target size (torch.Size([1, 10])) that is different to the input size (torch.Size([1, 1, 1])). This will likely lead to incorrect results due to broadcasting. Please ensure they have the same size.\n",
|
93 |
| - " return F.mse_loss(input, target, reduction=self.reduction)\n" |
94 |
| - ] |
95 |
| - }, |
96 |
| - { |
97 |
| - "name": "stderr", |
98 |
| - "output_type": "stream", |
99 |
| - "text": [ |
| 93 | + " return F.mse_loss(input, target, reduction=self.reduction)\n", |
100 | 94 | "C:\\Users\\heman\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.8_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python38\\site-packages\\torch\\optim\\lr_scheduler.py:371: UserWarning: To get the last learning rate computed by the scheduler, please use `get_last_lr()`.\n",
|
101 | 95 | " warnings.warn(\"To get the last learning rate computed by the scheduler, \"\n"
|
102 | 96 | ]
|
|
105 | 99 | "name": "stdout",
|
106 | 100 | "output_type": "stream",
|
107 | 101 | "text": [
|
108 |
| - "| epoch 1 | 100/ 2425 batches | lr 0.000001 | 33.25 ms | loss 85.93818 | ppl 21012529671469285338037947109145051136.00\n", |
109 |
| - "| epoch 1 | 200/ 2425 batches | lr 0.000001 | 34.48 ms | loss 79.05340 | ppl 21500878653947704947460846699675648.00\n", |
110 |
| - "| epoch 1 | 300/ 2425 batches | lr 0.000001 | 30.11 ms | loss 57.26056 | ppl 7378087694598164585644032.00\n", |
111 |
| - "| epoch 1 | 400/ 2425 batches | lr 0.000001 | 32.50 ms | loss 7.85224 | ppl 2571.49\n", |
112 |
| - "| epoch 1 | 500/ 2425 batches | lr 0.000001 | 30.85 ms | loss 17.58041 | ppl 43159535.77\n", |
113 |
| - "| epoch 1 | 600/ 2425 batches | lr 0.000001 | 29.69 ms | loss 49.18059 | ppl 2284862028840607154176.00\n", |
114 |
| - "| epoch 1 | 700/ 2425 batches | lr 0.000001 | 35.00 ms | loss 64.30408 | ppl 8450941249314608014900068352.00\n", |
115 |
| - "| epoch 1 | 800/ 2425 batches | lr 0.000001 | 29.52 ms | loss 17.45296 | ppl 37994820.30\n", |
116 |
| - "| epoch 1 | 900/ 2425 batches | lr 0.000001 | 30.86 ms | loss 9.96337 | ppl 21234.34\n", |
117 |
| - "| epoch 1 | 1000/ 2425 batches | lr 0.000001 | 30.33 ms | loss 6.68095 | ppl 797.08\n", |
118 |
| - "| epoch 1 | 1100/ 2425 batches | lr 0.000001 | 29.80 ms | loss 76.66705 | ppl 1977309318356556931923982092861440.00\n", |
119 |
| - "| epoch 1 | 1200/ 2425 batches | lr 0.000001 | 30.73 ms | loss 55.55959 | ppl 1346549031319642426048512.00\n", |
120 |
| - "| epoch 1 | 1300/ 2425 batches | lr 0.000001 | 34.24 ms | loss 15.73517 | ppl 6818646.35\n", |
121 |
| - "| epoch 1 | 1400/ 2425 batches | lr 0.000001 | 31.29 ms | loss 2.80549 | ppl 16.54\n", |
122 |
| - "| epoch 1 | 1500/ 2425 batches | lr 0.000001 | 31.47 ms | loss 4.61758 | ppl 101.25\n", |
123 |
| - "| epoch 1 | 1600/ 2425 batches | lr 0.000001 | 30.07 ms | loss 17.29784 | ppl 32535318.04\n", |
124 |
| - "| epoch 1 | 1700/ 2425 batches | lr 0.000001 | 32.03 ms | loss 4.81263 | ppl 123.06\n", |
125 |
| - "| epoch 1 | 1800/ 2425 batches | lr 0.000001 | 31.33 ms | loss 3.37098 | ppl 29.11\n", |
126 |
| - "| epoch 1 | 1900/ 2425 batches | lr 0.000001 | 32.92 ms | loss 4.62711 | ppl 102.22\n", |
127 |
| - "| epoch 1 | 2000/ 2425 batches | lr 0.000001 | 29.95 ms | loss 63.15213 | ppl 2670677042449227309505314816.00\n", |
128 |
| - "| epoch 1 | 2100/ 2425 batches | lr 0.000001 | 31.34 ms | loss 19.06731 | ppl 190908925.16\n", |
129 |
| - "| epoch 1 | 2200/ 2425 batches | lr 0.000001 | 32.46 ms | loss 7.35343 | ppl 1561.54\n", |
130 |
| - "| epoch 1 | 2300/ 2425 batches | lr 0.000001 | 31.90 ms | loss 2.26775 | ppl 9.66\n", |
131 |
| - "| epoch 1 | 2400/ 2425 batches | lr 0.000001 | 33.42 ms | loss 2.16332 | ppl 8.70\n" |
| 102 | + "| epoch 1 | 100/ 2425 batches | lr 0.000001 | 34.04 ms | loss 28.42016 | ppl 2201500551498.64\n", |
| 103 | + "| epoch 1 | 200/ 2425 batches | lr 0.000001 | 37.88 ms | loss 27.48427 | ppl 863512891626.25\n", |
| 104 | + "| epoch 1 | 300/ 2425 batches | lr 0.000001 | 31.47 ms | loss 16.79133 | ppl 19605643.05\n", |
| 105 | + "| epoch 1 | 400/ 2425 batches | lr 0.000001 | 31.75 ms | loss 2.42401 | ppl 11.29\n", |
| 106 | + "| epoch 1 | 500/ 2425 batches | lr 0.000001 | 35.81 ms | loss 4.50919 | ppl 90.85\n", |
| 107 | + "| epoch 1 | 600/ 2425 batches | lr 0.000001 | 31.02 ms | loss 52.29151 | ppl 51275971459472947150848.00\n", |
| 108 | + "| epoch 1 | 700/ 2425 batches | lr 0.000001 | 31.18 ms | loss 44.59446 | ppl 23287759048583860224.00\n", |
| 109 | + "| epoch 1 | 800/ 2425 batches | lr 0.000001 | 30.21 ms | loss 1.99442 | ppl 7.35\n", |
| 110 | + "| epoch 1 | 900/ 2425 batches | lr 0.000001 | 34.87 ms | loss 0.99142 | ppl 2.70\n", |
| 111 | + "| epoch 1 | 1000/ 2425 batches | lr 0.000001 | 31.98 ms | loss 4.26460 | ppl 71.14\n", |
| 112 | + "| epoch 1 | 1100/ 2425 batches | lr 0.000001 | 31.67 ms | loss 42.18362 | ppl 2089848714934452480.00\n", |
| 113 | + "| epoch 1 | 1200/ 2425 batches | lr 0.000001 | 36.95 ms | loss 30.01062 | ppl 10800592971091.07\n", |
| 114 | + "| epoch 1 | 1300/ 2425 batches | lr 0.000001 | 32.27 ms | loss 7.96660 | ppl 2883.03\n", |
| 115 | + "| epoch 1 | 1400/ 2425 batches | lr 0.000001 | 31.94 ms | loss 2.51443 | ppl 12.36\n", |
| 116 | + "| epoch 1 | 1500/ 2425 batches | lr 0.000001 | 31.70 ms | loss 6.14128 | ppl 464.65\n", |
| 117 | + "| epoch 1 | 1600/ 2425 batches | lr 0.000001 | 35.89 ms | loss 12.71198 | ppl 331697.28\n", |
| 118 | + "| epoch 1 | 1700/ 2425 batches | lr 0.000001 | 36.29 ms | loss 9.38306 | ppl 11885.27\n", |
| 119 | + "| epoch 1 | 1800/ 2425 batches | lr 0.000001 | 32.61 ms | loss 2.67167 | ppl 14.46\n", |
| 120 | + "| epoch 1 | 1900/ 2425 batches | lr 0.000001 | 30.92 ms | loss 6.04993 | ppl 424.08\n", |
| 121 | + "| epoch 1 | 2000/ 2425 batches | lr 0.000001 | 32.00 ms | loss 53.79560 | ppl 230744611081473279131648.00\n", |
| 122 | + "| epoch 1 | 2100/ 2425 batches | lr 0.000001 | 30.12 ms | loss 6.98467 | ppl 1079.95\n", |
| 123 | + "| epoch 1 | 2200/ 2425 batches | lr 0.000001 | 31.83 ms | loss 2.47668 | ppl 11.90\n", |
| 124 | + "| epoch 1 | 2300/ 2425 batches | lr 0.000001 | 35.42 ms | loss 2.59819 | ppl 13.44\n", |
| 125 | + "| epoch 1 | 2400/ 2425 batches | lr 0.000001 | 31.30 ms | loss 3.28963 | ppl 26.83\n" |
132 | 126 | ]
|
133 | 127 | }
|
134 | 128 | ],
|
|
166 | 160 | "metadata": {},
|
167 | 161 | "outputs": [
|
168 | 162 | {
|
169 |
| - "ename": "ValueError", |
170 |
| - "evalue": "too many dimensions 'str'", |
| 163 | + "ename": "TypeError", |
| 164 | + "evalue": "must be real number, not Timestamp", |
171 | 165 | "output_type": "error",
|
172 | 166 | "traceback": [
|
173 | 167 | "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
174 |
| - "\u001b[1;31mValueError\u001b[0m Traceback (most recent call last)", |
| 168 | + "\u001b[1;31mTypeError\u001b[0m Traceback (most recent call last)", |
175 | 169 | "Input \u001b[1;32mIn [7]\u001b[0m, in \u001b[0;36m<cell line: 5>\u001b[1;34m()\u001b[0m\n\u001b[0;32m 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtrendmaster\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01minferencer\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Inferencer\n\u001b[0;32m 4\u001b[0m inferencer \u001b[38;5;241m=\u001b[39m Inferencer(\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m./models/SBIN_model.pkl\u001b[39m\u001b[38;5;124m'\u001b[39m, kite\u001b[38;5;241m=\u001b[39m\u001b[38;5;28;01mNone\u001b[39;00m)\n\u001b[1;32m----> 5\u001b[0m predictions \u001b[38;5;241m=\u001b[39m \u001b[43minferencer\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mpredict_future\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mfuture_steps\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;241;43m10\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43msymbol\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[38;5;124;43mSBIN\u001b[39;49m\u001b[38;5;124;43m'\u001b[39;49m\u001b[43m)\u001b[49m\n",
|
176 |
| - "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.8_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python38\\site-packages\\trendmaster\\inferencer.py:62\u001b[0m, in \u001b[0;36mInferencer.predict_future\u001b[1;34m(self, val_data, future_steps, symbol)\u001b[0m\n\u001b[0;32m 60\u001b[0m test_result \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mTensor(\u001b[38;5;241m0\u001b[39m) \n\u001b[0;32m 61\u001b[0m truth \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mTensor(\u001b[38;5;241m0\u001b[39m)\n\u001b[1;32m---> 62\u001b[0m _ , data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_batch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mval_data\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 63\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mno_grad():\n\u001b[0;32m 64\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m0\u001b[39m, future_steps,\u001b[38;5;241m1\u001b[39m):\n", |
| 170 | + "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.8_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python38\\site-packages\\trendmaster\\inferencer.py:63\u001b[0m, in \u001b[0;36mInferencer.predict_future\u001b[1;34m(self, val_data, future_steps, symbol)\u001b[0m\n\u001b[0;32m 61\u001b[0m truth \u001b[38;5;241m=\u001b[39m torch\u001b[38;5;241m.\u001b[39mTensor(\u001b[38;5;241m0\u001b[39m)\n\u001b[0;32m 62\u001b[0m val_data \u001b[38;5;241m=\u001b[39m val_data\u001b[38;5;241m.\u001b[39mvalues \u001b[38;5;66;03m# Convert pandas DataFrame to numpy array\u001b[39;00m\n\u001b[1;32m---> 63\u001b[0m _ , data \u001b[38;5;241m=\u001b[39m \u001b[38;5;28;43mself\u001b[39;49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mget_batch\u001b[49m\u001b[43m(\u001b[49m\u001b[43mval_data\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;241;43m0\u001b[39;49m\u001b[43m,\u001b[49m\u001b[38;5;241;43m1\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[0;32m 64\u001b[0m \u001b[38;5;28;01mwith\u001b[39;00m torch\u001b[38;5;241m.\u001b[39mno_grad():\n\u001b[0;32m 65\u001b[0m \u001b[38;5;28;01mfor\u001b[39;00m i \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mrange\u001b[39m(\u001b[38;5;241m0\u001b[39m, future_steps,\u001b[38;5;241m1\u001b[39m):\n", |
177 | 171 | "File \u001b[1;32m~\\AppData\\Local\\Packages\\PythonSoftwareFoundation.Python.3.8_qbz5n2kfra8p0\\LocalCache\\local-packages\\Python38\\site-packages\\trendmaster\\inferencer.py:121\u001b[0m, in \u001b[0;36mInferencer.get_batch\u001b[1;34m(self, source, i, batch_size)\u001b[0m\n\u001b[0;32m 119\u001b[0m seq_len \u001b[38;5;241m=\u001b[39m \u001b[38;5;28mmin\u001b[39m(batch_size, \u001b[38;5;28mlen\u001b[39m(source) \u001b[38;5;241m-\u001b[39m \u001b[38;5;241m1\u001b[39m \u001b[38;5;241m-\u001b[39m i)\n\u001b[0;32m 120\u001b[0m batch \u001b[38;5;241m=\u001b[39m source[i:i\u001b[38;5;241m+\u001b[39mseq_len]\n\u001b[1;32m--> 121\u001b[0m inputs \u001b[38;5;241m=\u001b[39m \u001b[43mtorch\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mFloatTensor\u001b[49m\u001b[43m(\u001b[49m\u001b[43m[\u001b[49m\u001b[43mitem\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43;01mfor\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mitem\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;129;43;01min\u001b[39;49;00m\u001b[43m \u001b[49m\u001b[43mbatch\u001b[49m\u001b[43m]\u001b[49m\u001b[43m)\u001b[49m\u001b[38;5;241m.\u001b[39mto(\u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mdevice)\n\u001b[0;32m 122\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m inputs\n",
|
178 |
| - "\u001b[1;31mValueError\u001b[0m: too many dimensions 'str'" |
| 172 | + "\u001b[1;31mTypeError\u001b[0m: must be real number, not Timestamp" |
179 | 173 | ]
|
180 | 174 | }
|
181 | 175 | ],
|
|
0 commit comments