-
Notifications
You must be signed in to change notification settings - Fork 2.3k
/
Copy pathtensorflow2_synthetic_benchmark.py
131 lines (106 loc) · 4.87 KB
/
tensorflow2_synthetic_benchmark.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
# Copyright 2019 Uber Technologies, Inc. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import argparse
import os
import numpy as np
import timeit
import tensorflow as tf
import horovod.tensorflow as hvd
from tensorflow.keras import applications
# Benchmark settings
parser = argparse.ArgumentParser(description='TensorFlow Synthetic Benchmark',
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--fp16-allreduce', action='store_true', default=False,
help='use fp16 compression during allreduce')
parser.add_argument('--model', type=str, default='ResNet50',
help='model to benchmark')
parser.add_argument('--batch-size', type=int, default=32,
help='input batch size')
parser.add_argument('--num-warmup-batches', type=int, default=10,
help='number of warm-up batches that don\'t count towards benchmark')
parser.add_argument('--num-batches-per-iter', type=int, default=10,
help='number of batches per benchmark iteration')
parser.add_argument('--num-iters', type=int, default=10,
help='number of benchmark iterations')
parser.add_argument('--no-cuda', action='store_true', default=False,
help='disables CUDA training')
args = parser.parse_args()
args.cuda = not args.no_cuda
# Horovod: initialize Horovod.
hvd.init()
# Horovod: pin GPU to be used to process local rank (one GPU per process)
if args.cuda:
gpus = tf.config.experimental.list_physical_devices('GPU')
for gpu in gpus:
tf.config.experimental.set_memory_growth(gpu, True)
if gpus:
tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')
else:
os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
# Set up standard model.
model = getattr(applications, args.model)(weights=None)
opt = tf.optimizers.SGD(0.01)
data = tf.random.uniform([args.batch_size, 224, 224, 3])
target = tf.random.uniform([args.batch_size, 1], minval=0, maxval=999, dtype=tf.int64)
@tf.function
def benchmark_step(first_batch):
# Horovod: (optional) compression algorithm.
compression = hvd.Compression.fp16 if args.fp16_allreduce else hvd.Compression.none
# Horovod: use DistributedGradientTape
with tf.GradientTape() as tape:
probs = model(data, training=True)
loss = tf.losses.sparse_categorical_crossentropy(target, probs)
# Horovod: add Horovod Distributed GradientTape.
tape = hvd.DistributedGradientTape(tape, compression=compression)
gradients = tape.gradient(loss, model.trainable_variables)
opt.apply_gradients(zip(gradients, model.trainable_variables))
# Horovod: broadcast initial variable states from rank 0 to all other processes.
# This is necessary to ensure consistent initialization of all workers when
# training is started with random weights or restored from a checkpoint.
#
# Note: broadcast should be done after the first gradient step to ensure optimizer
# initialization.
if first_batch:
hvd.broadcast_variables(model.variables, root_rank=0)
hvd.broadcast_variables(opt.variables(), root_rank=0)
def log(s, nl=True):
if hvd.rank() != 0:
return
print(s, end='\n' if nl else '')
log('Model: %s' % args.model)
log('Batch size: %d' % args.batch_size)
device = 'GPU' if args.cuda else 'CPU'
log('Number of %ss: %d' % (device, hvd.size()))
with tf.device(device):
# Warm-up
log('Running warmup...')
benchmark_step(first_batch=True)
timeit.timeit(lambda: benchmark_step(first_batch=False),
number=args.num_warmup_batches)
# Benchmark
log('Running benchmark...')
img_secs = []
for x in range(args.num_iters):
time = timeit.timeit(lambda: benchmark_step(first_batch=False),
number=args.num_batches_per_iter)
img_sec = args.batch_size * args.num_batches_per_iter / time
log('Iter #%d: %.1f img/sec per %s' % (x, img_sec, device))
img_secs.append(img_sec)
# Results
img_sec_mean = np.mean(img_secs)
img_sec_conf = 1.96 * np.std(img_secs)
log('Img/sec per %s: %.1f +-%.1f' % (device, img_sec_mean, img_sec_conf))
log('Total img/sec on %d %s(s): %.1f +-%.1f' %
(hvd.size(), device, hvd.size() * img_sec_mean, hvd.size() * img_sec_conf))