-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmaml.py
201 lines (185 loc) · 7.59 KB
/
maml.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import torch.nn as nn
import numpy as np
import torch
import os
from torch.utils.data import DataLoader
from data.omniglot_dataset import Datagenerator
from inner_update import apply_inner_update, get_task_outer_loss
from tensor_logger import writer
from utils import dotdict, make_collate_fn
from collections import OrderedDict
from torchvision.utils import make_grid
from tqdm import tqdm
import itertools
import matplotlib.pyplot as plt
class MAML:
def __init__(self, hparams, model):
self.device = hparams.device
self.model = model
self.num_classes = hparams.num_classes
self.num_samples_per_class = hparams.num_samples_per_class
self.data_folder = hparams.data_folder
self.num_meta_test_classes = hparams.num_meta_test_classes
self.num_meta_test_samples_per_class = hparams.num_meta_test_samples_per_class
self.meta_test_num_inner_updates = hparams.meta_test_num_inner_updates
self.num_train_inner_updates = max(
hparams.num_inner_updates, hparams.meta_test_num_inner_updates
)
self.train_iterations = hparams.num_meta_train_iterations
self.validation_iterations = hparams.num_meta_validation_iterations
self.test_iterations = hparams.num_meta_test_iterations
self.batch_size = hparams.batch_size
self.meta_lr = hparams.meta_lr
self.inner_update_lr = hparams.inner_update_lr
self.validation_frequency = hparams.validation_frequency
self._train_data_loader = self.train_data_loader()
self._test_data_loader = self.test_data_loader()
self._validation_data_loader = self.validation_data_loader()
self.dim_hidden = hparams.dim_hidden
self.optimizer = torch.optim.Adam(self.model.parameters(), lr=self.meta_lr)
self.loss_fn = nn.CrossEntropyLoss()
self.test = self.build_evaluation_fn(
self.test_iterations, self._test_data_loader, self.batch_size, "Test"
)
self.validate = self.build_evaluation_fn(
self.validation_iterations,
self._validation_data_loader,
self.batch_size,
"Validation",
)
def train_step(self):
self.model.train()
batch = next(iter(self._train_data_loader))
mean_outer_loss = torch.tensor(0.0, device=self.device)
accuracy = []
for task_num in range(self.batch_size):
self.train_batch_num += 1
task_inner_inputs = batch["inner_inputs"][task_num]
task_inner_labels = batch["inner_labels"][task_num]
task_outer_inputs = batch["outer_inputs"][task_num]
task_outer_labels = batch["outer_labels"][task_num]
# Perform inner gradient descent for "num_inner_updates" steps
writer.add_image(
"train/inner", make_grid(task_inner_inputs), self.train_batch_num,
)
writer.add_image(
"train/outer", make_grid(task_outer_inputs), self.train_batch_num,
)
outer_loss, outer_accuracy = get_task_outer_loss(
self.model,
self.loss_fn,
task_inner_inputs,
task_inner_labels,
task_outer_inputs,
task_outer_labels,
self.inner_update_lr,
self.num_train_inner_updates,
"train",
)
mean_outer_loss += outer_loss
accuracy.append(outer_accuracy)
mean_outer_loss.div_(self.batch_size)
self.optimizer.zero_grad()
mean_outer_loss.backward()
self.optimizer.step()
mean_accuracy = np.mean(accuracy)
writer.add_scalar(
"train/mean_outer_loss", mean_outer_loss, self.train_batch_num
)
writer.add_scalar(
"train/mean_outer_accuracy", mean_accuracy, self.train_batch_num
)
return mean_outer_loss, mean_accuracy
def train(self):
self.train_batch_num = 0
with tqdm(total=self.train_iterations) as pbar:
for itr in range(self.train_iterations):
self.episode = itr
mean_outer_train_loss, mean_outer_train_accuracy = self.train_step()
pbar.update(1)
postfix = {
"loss": f"{mean_outer_train_loss:.4f}",
"accuracy": f"{mean_outer_train_accuracy:.4f}",
}
pbar.set_description(f"Training itr = {itr+1}")
pbar.set_postfix(**postfix)
if itr % self.validation_frequency == 0:
self.validate()
def build_evaluation_fn(self, num_iterations, data_loader, batch_size, prefix):
def eval_fn():
accuracies = []
for itr in range(num_iterations):
mean_outer_loss, batch_accuracies = self.evaluate(
data_loader, prefix
)
accuracies.append(batch_accuracies)
accuracies = list(itertools.chain.from_iterable(accuracies))
print(f"{prefix} Accuracy: {np.mean(accuracies)}")
logfile_name = open(os.path.join("logs", f"{prefix}.csv"), "a")
logfile_name.write(f"{self.episode},{np.mean(accuracies)}\n")
return eval_fn
def evaluate(self, data_iterator, prefix=""):
self.model.eval()
mean_outer_loss = torch.tensor(0.0, device=self.device)
batch = next(iter(data_iterator))
accuracies = []
for task_num in range(self.batch_size):
task_inner_inputs = batch["inner_inputs"][task_num]
task_inner_labels = batch["inner_labels"][task_num]
task_outer_inputs = batch["outer_inputs"][task_num]
task_outer_labels = batch["outer_labels"][task_num]
outer_loss, outer_accuracy = get_task_outer_loss(
self.model,
nn.CrossEntropyLoss(),
task_inner_inputs,
task_inner_labels,
task_outer_inputs,
task_outer_labels,
self.inner_update_lr,
self.num_train_inner_updates,
prefix,
)
mean_outer_loss += outer_loss
accuracies.append(outer_accuracy)
mean_outer_loss.div_(self.batch_size)
mean_accuracy = np.mean(accuracies)
return mean_outer_loss, accuracies
def train_data_loader(self):
train_data_generator = Datagenerator(
self.num_classes,
self.num_samples_per_class,
self.data_folder,
(28, 28), # Size of omniglot dataset images
"train",
)
return DataLoader(
train_data_generator,
batch_size=self.batch_size,
collate_fn=make_collate_fn(self.device),
)
def test_data_loader(self):
test_data_generator = Datagenerator(
self.num_meta_test_classes,
self.num_meta_test_samples_per_class,
self.data_folder,
(28, 28), # Size of omniglot dataset images
"test",
)
return DataLoader(
test_data_generator,
batch_size=self.batch_size,
collate_fn=make_collate_fn(self.device),
)
def validation_data_loader(self):
val_data_generator = Datagenerator(
self.num_classes,
self.num_samples_per_class,
self.data_folder,
(28, 28), # Size of omniglot dataset images
"val",
)
return DataLoader(
val_data_generator,
batch_size=self.batch_size,
collate_fn=make_collate_fn(self.device),
)