-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcompute_relative_performances.py
161 lines (138 loc) · 7.06 KB
/
compute_relative_performances.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#
# SPDX-FileCopyrightText: 2020 Idiap Research Institute <[email protected]>
#
# Written by Prabhu Teja <[email protected]>,
# Florian Mai <[email protected]>
# Thijs Vogels <[email protected]>
#
# SPDX-License-Identifier: MIT
#
import os
import sys
import random
sys.path.append("./DeepOBS")
from deepobs import analyzer
from deepobs.analyzer import get_hyperparameter_optimization_performance, plot_hyperparam_optimization, print_tunability_to_latex, plot_box_hyperparam_optim
import random
import multiprocessing
random.seed(a=12) # fix random seed for when shuffling the random search results.
import pickle, argparse
import matplotlib.pyplot as plt
import matplotlib as mpl
import seaborn as sb
from collections import defaultdict
import numpy as np
def main():
parser = argparse.ArgumentParser(description='Computes summary metrics and boxplots for any given problem.')
parser.add_argument('-inpath', type=str, required=True,
help='Basepath to all the logs.')
parser.add_argument('-problems', type=str, required=True, nargs = "+", choices = ["fmnist_2c2d", "mnist_vae", "quadratic_deep", "fmnist_vae", "cifar100_allcnnc", "cifar10_3c3d", "imdb_bilstm", "svhn_wrn164", "tolstoi_char_rnn"], help = "Problems to consider in summary statistic.")
parser.add_argument('-optimizers', type=str, nargs = "+", required=True, help = "List of optimizers to plot.")
parser.add_argument('-optimizer_labels', type=str, nargs = "+", required=False, default = None, help = "List of labels to display for each optimizer given in 'optimizers'. If None, the optimizer names are taken directly as labels.")
parser.add_argument('-num_shuffle', default=100, type=int, help="Number of times to shuffle for computing expected validation performance via bootstrapping.")
parser.add_argument('-usetex', action="store_true", help="Whether to use tex for plotting.")
parser.add_argument('-budget', default=100, type=int, help="Bugdet of the hyperparameter search.")
parser.add_argument('-outfile', type=str, default = "summary.png", help="Path to store the plot.")
parser.add_argument('-x_axis', type=str, default = "trials", choices = ["trials", "wct"], help="What to consider as budget, either 'trials' (number of hyperparameter configurations) or 'wct' (wallclock-time).")
args = parser.parse_args()
# plot configuration
#pgf_with_latex = { # setup matplotlib to use latex for output
# "pgf.texsystem": "pdflatex", # change this if using xetex or lautex
# "text.usetex": args.usetex, # use LaTeX to write all text
# "font.family": "serif",
# "font.serif": [], # blank entries should cause plots
# "font.sans-serif": [], # to inherit fonts from the document
# "font.monospace": [],
# "axes.labelsize": 10,
# "font.size": 10,
# "legend.fontsize": 8, # Make the legend/label fonts
# "xtick.labelsize": 14, # a little smaller
# "ytick.labelsize": 12, # default fig size of 0.9 textwidth
# "pgf.preamble": [
# r"\usepackage[utf8]{inputenc}", # use utf8 input and T1 fonts
# r"\usepackage[T1]{fontenc}", # plots will be generated
# ] # using this preamble
# }
# mpl.use("pgf")
#mpl.rcParams.update(pgf_with_latex)
random.seed(a=12) # fix random seed for when shuffling the random search results.
num_shuffle = args.num_shuffle
rankings = [i for i in range(1, args.budget)]
opt_labels = args.optimizer_labels or args.optimizers
x_axis = args.x_axis
def compute_problem_performance(p):
problem = p
prob_dir = args.inpath
print(f"Doing {problem}")
problem_type = ['acc', 'loss'][('vae' in problem) or ('deep' in problem)]
dir_path = []
for opt in args.optimizers:
path_to_jsons = find_json_parent(os.path.join(prob_dir, opt))
dir_path.append([path_to_jsons])
opt_labels = args.optimizer_labels or args.optimizers
hyperparam_perf = analyzer.compute_tunability_metrics(dir_path, opt_labels, obj="max" if problem_type =="acc" else "min", num_shuffle=num_shuffle, x_axis=x_axis, rankings=rankings)
return hyperparam_perf
def find_json_parent(rootdir):
for subdir, dirs, files in os.walk(rootdir):
for d in dirs:
d = os.path.join(subdir, d)
for f in os.listdir(d):
is_correct_dir = f.endswith(".json")
if is_correct_dir:
return subdir
problem_performances = list(map(compute_problem_performance, args.problems))
rank_perfs = {str(r) : {} for r in rankings}
for rank in rankings:
for l in opt_labels:
perfs = []
for p in problem_performances:
#print(p[l][str(rank)])
perfs.append(p[l]["r="+str(rank)])
rank_perfs[str(rank)][l] = sum(perfs) / len(perfs)
# print(dict_str)
pgf_with_latex = { # setup mpl to use latex for output
# use LaTeX to write all text
"font.family": "serif",
"font.serif": [], # blank entries should cause plots
"font.sans-serif": [], # to inherit fonts from the document
"font.monospace": [],
"axes.labelsize": 10,
"font.size": 10,
"legend.fontsize": 8, # Make the legend/label fonts
"xtick.labelsize": 14, # a little smaller
# default fig size of 0.9 textwidth
"ytick.labelsize": 12,
# "axes.labelsize": 'large',
# "legend.fontsize": 'large'
# "axes.fontsize": 14
}
mpl.rcParams.update(pgf_with_latex)
result_dict = rank_perfs
print(result_dict)
results_by_optimizer = defaultdict(list)
vals = []
for k,v in result_dict.items():
vals.append(str(k))
for k1,v1 in v.items():
results_by_optimizer[k1].append(v1)
#fig = plt.figure(figsize=(6.6*2, 4.95*2))
fig = plt.figure()
for o in opt_labels:
# x = np.log2(np.array(vals, dtype = np.float32))
x = np.array(vals).astype(np.float32)
y = np.array(results_by_optimizer[o])
sb.lineplot(x,y,label = o, sort = True)
ax = fig.axes[0]
plt.xlabel("# Hyperparameter Configurations (Budget)")
plt.ylabel("Aggregated relative performance")
# plt.xscale('log')
ax.xaxis.set_major_formatter(mpl.ticker.ScalarFormatter())
ax.xaxis.set_major_formatter(mpl.ticker.FormatStrFormatter("%d"))
ax.xaxis.set_major_formatter(mpl.ticker.FuncFormatter(lambda x, pos: str(int(round(x)))))
ax.xaxis.set_major_locator(mpl.ticker.FixedLocator(list(range(0, args.budget, 10)), 10))
sb.despine(offset=0, trim=True)
# plt.xticks(np.concatenate([x[:-1].astype(np.int32),x[-1].astype(np.float32)))
plt.tight_layout(0)
plt.savefig(args.outfile)
if __name__ == "__main__":
main()