|
| 1 | +var common = require('../common'); |
| 2 | +var assert = require('assert'); |
| 3 | +var constants = require('constants'); |
| 4 | + |
| 5 | +try { |
| 6 | + var crypto = require('crypto'); |
| 7 | +} catch (e) { |
| 8 | + console.log('Not compiled with OPENSSL support.'); |
| 9 | + process.exit(); |
| 10 | +} |
| 11 | + |
| 12 | +// Test Diffie-Hellman with two parties sharing a secret, |
| 13 | +// using various encodings as we go along |
| 14 | +var dh1 = crypto.createDiffieHellman(256); |
| 15 | +var p1 = dh1.getPrime('buffer'); |
| 16 | +var dh2 = crypto.createDiffieHellman(p1, 'buffer'); |
| 17 | +var key1 = dh1.generateKeys(); |
| 18 | +var key2 = dh2.generateKeys('hex'); |
| 19 | +var secret1 = dh1.computeSecret(key2, 'hex', 'base64'); |
| 20 | +var secret2 = dh2.computeSecret(key1, 'binary', 'buffer'); |
| 21 | + |
| 22 | +assert.equal(secret1, secret2.toString('base64')); |
| 23 | +assert.equal(dh1.verifyError, 0); |
| 24 | +assert.equal(dh2.verifyError, 0); |
| 25 | + |
| 26 | +assert.throws(function() { |
| 27 | + crypto.createDiffieHellman([0x1, 0x2]); |
| 28 | +}); |
| 29 | + |
| 30 | +assert.throws(function() { |
| 31 | + crypto.createDiffieHellman(function() { }); |
| 32 | +}); |
| 33 | + |
| 34 | +assert.throws(function() { |
| 35 | + crypto.createDiffieHellman(/abc/); |
| 36 | +}); |
| 37 | + |
| 38 | +assert.throws(function() { |
| 39 | + crypto.createDiffieHellman({}); |
| 40 | +}); |
| 41 | + |
| 42 | +// Create "another dh1" using generated keys from dh1, |
| 43 | +// and compute secret again |
| 44 | +var dh3 = crypto.createDiffieHellman(p1, 'buffer'); |
| 45 | +var privkey1 = dh1.getPrivateKey(); |
| 46 | +dh3.setPublicKey(key1); |
| 47 | +dh3.setPrivateKey(privkey1); |
| 48 | + |
| 49 | +assert.deepEqual(dh1.getPrime(), dh3.getPrime()); |
| 50 | +assert.deepEqual(dh1.getGenerator(), dh3.getGenerator()); |
| 51 | +assert.deepEqual(dh1.getPublicKey(), dh3.getPublicKey()); |
| 52 | +assert.deepEqual(dh1.getPrivateKey(), dh3.getPrivateKey()); |
| 53 | +assert.equal(dh3.verifyError, 0); |
| 54 | + |
| 55 | +var secret3 = dh3.computeSecret(key2, 'hex', 'base64'); |
| 56 | + |
| 57 | +assert.equal(secret1, secret3); |
| 58 | + |
| 59 | +// Run this one twice to make sure that the dh3 clears its error properly |
| 60 | +(function() { |
| 61 | + var c = crypto.createDecipher('aes-128-ecb', ''); |
| 62 | + assert.throws(function() { c.final('utf8') }, /wrong final block length/); |
| 63 | +})(); |
| 64 | + |
| 65 | +assert.throws(function() { |
| 66 | + dh3.computeSecret(''); |
| 67 | +}, /key is too small/i); |
| 68 | + |
| 69 | +(function() { |
| 70 | + var c = crypto.createDecipher('aes-128-ecb', ''); |
| 71 | + assert.throws(function() { c.final('utf8') }, /wrong final block length/); |
| 72 | +})(); |
| 73 | + |
| 74 | +// Create a shared using a DH group. |
| 75 | +var alice = crypto.createDiffieHellmanGroup('modp5'); |
| 76 | +var bob = crypto.createDiffieHellmanGroup('modp5'); |
| 77 | +alice.generateKeys(); |
| 78 | +bob.generateKeys(); |
| 79 | +var aSecret = alice.computeSecret(bob.getPublicKey()).toString('hex'); |
| 80 | +var bSecret = bob.computeSecret(alice.getPublicKey()).toString('hex'); |
| 81 | +assert.equal(aSecret, bSecret); |
| 82 | +assert.equal(alice.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); |
| 83 | +assert.equal(bob.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); |
| 84 | + |
| 85 | +// Ensure specific generator (buffer) works as expected. |
| 86 | +var modp1 = crypto.createDiffieHellmanGroup('modp1'); |
| 87 | +var modp1buf = new Buffer([ |
| 88 | + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xc9, 0x0f, |
| 89 | + 0xda, 0xa2, 0x21, 0x68, 0xc2, 0x34, 0xc4, 0xc6, 0x62, 0x8b, |
| 90 | + 0x80, 0xdc, 0x1c, 0xd1, 0x29, 0x02, 0x4e, 0x08, 0x8a, 0x67, |
| 91 | + 0xcc, 0x74, 0x02, 0x0b, 0xbe, 0xa6, 0x3b, 0x13, 0x9b, 0x22, |
| 92 | + 0x51, 0x4a, 0x08, 0x79, 0x8e, 0x34, 0x04, 0xdd, 0xef, 0x95, |
| 93 | + 0x19, 0xb3, 0xcd, 0x3a, 0x43, 0x1b, 0x30, 0x2b, 0x0a, 0x6d, |
| 94 | + 0xf2, 0x5f, 0x14, 0x37, 0x4f, 0xe1, 0x35, 0x6d, 0x6d, 0x51, |
| 95 | + 0xc2, 0x45, 0xe4, 0x85, 0xb5, 0x76, 0x62, 0x5e, 0x7e, 0xc6, |
| 96 | + 0xf4, 0x4c, 0x42, 0xe9, 0xa6, 0x3a, 0x36, 0x20, 0xff, 0xff, |
| 97 | + 0xff, 0xff, 0xff, 0xff, 0xff, 0xff |
| 98 | +]); |
| 99 | +var exmodp1 = crypto.createDiffieHellman(modp1buf, new Buffer([2])); |
| 100 | +modp1.generateKeys(); |
| 101 | +exmodp1.generateKeys(); |
| 102 | +var modp1Secret = modp1.computeSecret(exmodp1.getPublicKey()).toString('hex'); |
| 103 | +var exmodp1Secret = exmodp1.computeSecret(modp1.getPublicKey()).toString('hex'); |
| 104 | +assert.equal(modp1Secret, exmodp1Secret); |
| 105 | +assert.equal(modp1.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); |
| 106 | +assert.equal(exmodp1.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); |
| 107 | + |
| 108 | + |
| 109 | +// Ensure specific generator (string with encoding) works as expected. |
| 110 | +var exmodp1_2 = crypto.createDiffieHellman(modp1buf, '02', 'hex'); |
| 111 | +exmodp1_2.generateKeys(); |
| 112 | +modp1Secret = modp1.computeSecret(exmodp1_2.getPublicKey()).toString('hex'); |
| 113 | +var exmodp1_2Secret = exmodp1_2.computeSecret(modp1.getPublicKey()) |
| 114 | + .toString('hex'); |
| 115 | +assert.equal(modp1Secret, exmodp1_2Secret); |
| 116 | +assert.equal(exmodp1_2.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); |
| 117 | + |
| 118 | + |
| 119 | +// Ensure specific generator (string without encoding) works as expected. |
| 120 | +var exmodp1_3 = crypto.createDiffieHellman(modp1buf, '\x02'); |
| 121 | +exmodp1_3.generateKeys(); |
| 122 | +modp1Secret = modp1.computeSecret(exmodp1_3.getPublicKey()).toString('hex'); |
| 123 | +var exmodp1_3Secret = exmodp1_3.computeSecret(modp1.getPublicKey()) |
| 124 | + .toString('hex'); |
| 125 | +assert.equal(modp1Secret, exmodp1_3Secret); |
| 126 | +assert.equal(exmodp1_3.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); |
| 127 | + |
| 128 | + |
| 129 | +// Ensure specific generator (numeric) works as expected. |
| 130 | +var exmodp1_4 = crypto.createDiffieHellman(modp1buf, 2); |
| 131 | +exmodp1_4.generateKeys(); |
| 132 | +modp1Secret = modp1.computeSecret(exmodp1_4.getPublicKey()).toString('hex'); |
| 133 | +var exmodp1_4Secret = exmodp1_4.computeSecret(modp1.getPublicKey()) |
| 134 | + .toString('hex'); |
| 135 | +assert.equal(modp1Secret, exmodp1_4Secret); |
| 136 | +assert.equal(exmodp1_4.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); |
| 137 | + |
| 138 | + |
| 139 | +var p = 'FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74' + |
| 140 | + '020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F1437' + |
| 141 | + '4FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7ED' + |
| 142 | + 'EE386BFB5A899FA5AE9F24117C4B1FE649286651ECE65381FFFFFFFFFFFFFFFF'; |
| 143 | +var bad_dh = crypto.createDiffieHellman(p, 'hex'); |
| 144 | +assert.equal(bad_dh.verifyError, constants.DH_NOT_SUITABLE_GENERATOR); |
| 145 | + |
| 146 | + |
| 147 | +// Test ECDH |
| 148 | +var ecdh1 = crypto.createECDH('prime256v1'); |
| 149 | +var ecdh2 = crypto.createECDH('prime256v1'); |
| 150 | +var key1 = ecdh1.generateKeys(); |
| 151 | +var key2 = ecdh2.generateKeys('hex'); |
| 152 | +var secret1 = ecdh1.computeSecret(key2, 'hex', 'base64'); |
| 153 | +var secret2 = ecdh2.computeSecret(key1, 'binary', 'buffer'); |
| 154 | + |
| 155 | +assert.equal(secret1, secret2.toString('base64')); |
| 156 | + |
| 157 | +// Point formats |
| 158 | +assert.equal(ecdh1.getPublicKey('buffer', 'uncompressed')[0], 4); |
| 159 | +var firstByte = ecdh1.getPublicKey('buffer', 'compressed')[0]; |
| 160 | +assert(firstByte === 2 || firstByte === 3); |
| 161 | +var firstByte = ecdh1.getPublicKey('buffer', 'hybrid')[0]; |
| 162 | +assert(firstByte === 6 || firstByte === 7); |
| 163 | + |
| 164 | +// ECDH should check that point is on curve |
| 165 | +var ecdh3 = crypto.createECDH('secp256k1'); |
| 166 | +var key3 = ecdh3.generateKeys(); |
| 167 | + |
| 168 | +assert.throws(function() { |
| 169 | + var secret3 = ecdh2.computeSecret(key3, 'binary', 'buffer'); |
| 170 | +}); |
| 171 | + |
| 172 | +// ECDH should allow .setPrivateKey()/.setPublicKey() |
| 173 | +var ecdh4 = crypto.createECDH('prime256v1'); |
| 174 | + |
| 175 | +ecdh4.setPrivateKey(ecdh1.getPrivateKey()); |
| 176 | +ecdh4.setPublicKey(ecdh1.getPublicKey()); |
| 177 | + |
| 178 | +assert.throws(function() { |
| 179 | + ecdh4.setPublicKey(ecdh3.getPublicKey()); |
| 180 | +}); |
0 commit comments