-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrobotics.py
154 lines (111 loc) · 5.41 KB
/
robotics.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import argparse
from datetime import datetime
from pathlib import Path
import mlflow
import tensorflow as tf
from tensorflow.keras import Model
from tensorflow.keras import layers
from tensorflow.keras import metrics
from tensorflow.keras import optimizers
from tensorflow.keras.callbacks import TensorBoard, ModelCheckpoint
import plotting
import tcn
import dataset
OFFSET = 1
SEQUENCE_LENGHT = 150
MAX_SAMPLES = 1_000_000
SAMPLING_RATE = 5
def create_model(depth = 5, kernel_size = 4, filters = 64, dropout_rate = 0.2, **__):
print(f"Input sequence lenght: {SEQUENCE_LENGHT}, "
f"model receptive field: {tcn.receptive_field_size(kernel_size, depth)}")
channels = len(dataset.SENSORS)
block_filters = [filters] * depth
num_classes = 3
inputs = layers.Input(shape=(SEQUENCE_LENGHT, channels))
x = tcn.TCN(block_filters,
kernel_size=kernel_size,
dropout_rate=dropout_rate)(inputs)
x = layers.Dropout(dropout_rate)(x)
outputs = layers.Dense(num_classes,
activation="linear",
name="output")(x)
model = Model(inputs, outputs)
return model
def train(model, train_dataset, validation_dataset, log_path: Path, output_path: Path,
learning_rate=0.001, batch_size=32, epochs=5, **__):
# print("Training samples: ", tf.data.experimental.cardinality(train_dataset).numpy())
# print("Validation samples: ", tf.data.experimental.cardinality(validation_dataset).numpy())
model.compile(optimizers.Adam(learning_rate=learning_rate),
loss='mae',
metrics=[metrics.mean_absolute_error,
metrics.mean_squared_error,
metrics.RootMeanSquaredError()
])
# model.summary()
model.fit(train_dataset.batch(batch_size),
validation_data=validation_dataset.batch(batch_size),
callbacks=build_callbacks(log_path, output_path),
epochs=epochs)
return model
def build_callbacks(log_path: Path, output_path:Path):
return [
ModelCheckpoint(str(output_path), save_best_only=True),
TensorBoard(str(log_path))
]
def run_training(data_path, log_path, output_path, **hyperparams):
train_dataset, validation_dataset = dataset.load_datasets(SEQUENCE_LENGHT, OFFSET,
train_data_path=Path(data_path) / "train.txt",
test_data_path=Path(data_path) / "test.txt",
max_samples=MAX_SAMPLES,
sampling_rate=SAMPLING_RATE,
normalize_inputs=hyperparams.get("normalize_inputs", False))
start_time = datetime.now().strftime("%Y-%m-%dT%H-%M_%S")
output_path = Path(output_path) / start_time
log_path = Path(log_path) / start_time
with mlflow.start_run():
mlflow.set_tag("start_time", start_time)
mlflow.set_tag("output_path", output_path)
mlflow.set_tag("log_path", log_path)
mlflow.log_params(hyperparams)
model = create_model(**hyperparams)
train(model, train_dataset, validation_dataset, log_path, output_path, **hyperparams)
log_metrics(model, train_dataset, validation_dataset, **hyperparams)
log_predictions(model, output_path, validation_dataset, train_dataset)
log_model(model, output_path)
def log_model(model, output_path):
model_path = output_path / "model"
model.save(model_path)
mlflow.log_artifact(model_path)
def log_predictions(model, output_path: Path, validation_dataset, train_dataset):
plot_path = output_path / "predictions_train.png"
plotting.plot_predictions(train_dataset.batch(250), model, plot_path)
mlflow.log_artifact(plot_path)
plot_path = output_path / "predictions_validation.png"
plotting.plot_predictions(validation_dataset.batch(250), model, plot_path)
mlflow.log_artifact(plot_path)
def log_metrics(model, train_dataset, validation_dataset, batch_size, **__):
mlflow.log_metrics(
model.evaluate(train_dataset
.batch(batch_size),
return_dict=True))
validation_metrics = model.evaluate(validation_dataset
.batch(batch_size),
return_dict=True)
mlflow.log_metrics({"val_"+key: metric for key, metric in validation_metrics.items()})
def _parse_cli_arguments():
parser = argparse.ArgumentParser()
parser.add_argument('--data-path', type=str, default="./")
parser.add_argument('--output-path', type=str, default="model")
parser.add_argument('--log-path', type=str, default="logs")
parser.add_argument('--depth', type=int, default=5)
parser.add_argument('--kernel_size', type=int, default=4)
parser.add_argument('--filters', type=int, default=64)
parser.add_argument('--dropout_rate', type=float, default=0.2)
parser.add_argument('--normalize_inputs', type=bool, default=False)
parser.add_argument('--learning_rate', type=int, default=0.001)
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--epochs', type=int, default=10)
args = vars(parser.parse_args())
return args
if __name__ == '__main__':
run_training(**_parse_cli_arguments())