forked from agda/agda-stdlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathPartiality.agda
955 lines (728 loc) · 35.6 KB
/
Partiality.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
------------------------------------------------------------------------
-- The Agda standard library
--
-- The partiality monad
------------------------------------------------------------------------
{-# OPTIONS --cubical-compatible --safe --guardedness #-}
module Effect.Monad.Partiality where
open import Codata.Musical.Notation
open import Effect.Functor
open import Effect.Applicative
open import Effect.Monad
open import Data.Bool.Base using (Bool; false; true)
open import Data.Nat using (ℕ; zero; suc; _+_)
open import Data.Product as Prod hiding (map)
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)
open import Function.Base
open import Function.Bundles using (_⇔_; mk⇔)
open import Level using (Level; _⊔_)
open import Relation.Binary.Core as B hiding (Rel; _⇔_)
open import Relation.Binary.Definitions
using (Decidable; Reflexive; Symmetric; Transitive)
open import Relation.Binary.Structures
using (IsPreorder; IsEquivalence)
open import Relation.Binary.Bundles
using (Preorder; Setoid; Poset)
import Relation.Binary.Properties.Setoid as SetoidProperties
open import Relation.Binary.PropositionalEquality.Core as P using (_≡_)
import Relation.Binary.PropositionalEquality.Properties as P
open import Relation.Nullary
open import Relation.Nullary.Decidable hiding (map)
open import Relation.Nullary.Negation
private
variable
a b c f s ℓ : Level
A : Set a
B : Set b
C : Set c
------------------------------------------------------------------------
-- The partiality monad
data _⊥ (A : Set a) : Set a where
now : (x : A) → A ⊥
later : (x : ∞ (A ⊥)) → A ⊥
bind : A ⊥ → (A → B ⊥) → B ⊥
bind (now x) f = f x
bind (later x) f = later (♯ (bind (♭ x) f))
functor : RawFunctor {ℓ} _⊥
functor = record { _<$>_ = map } where
map : (A → B) → A ⊥ → B ⊥
map f (now a) = now (f a)
map f (later d) = later (♯ map f (♭ d))
applicative : RawApplicative {f = f} _⊥
applicative = record
{ rawFunctor = functor
; pure = now
; _<*>_ = λ mf mx → bind mf (λ f → bind mx (now ∘′ f))
}
monad : RawMonad {f = f} _⊥
monad = record
{ rawApplicative = applicative
; _>>=_ = bind
}
join : (A ⊥) ⊥ → A ⊥
join = Join.join monad
private module M {f} = RawMonad (monad {f})
-- Non-termination.
never : A ⊥
never = later (♯ never)
-- run x for n steps peels off at most n "later" constructors from x.
run_for_steps : A ⊥ → ℕ → A ⊥
run now x for n steps = now x
run later x for zero steps = later x
run later x for suc n steps = run ♭ x for n steps
-- Is the computation done?
isNow : A ⊥ → Bool
isNow (now x) = true
isNow (later x) = false
------------------------------------------------------------------------
-- Kinds
-- The partiality monad comes with two forms of equality (weak and
-- strong) and one ordering. Strong equality is stronger than the
-- ordering, which is stronger than weak equality.
-- The three relations are defined using a single data type, indexed
-- by a "kind".
data OtherKind : Set where
geq weak : OtherKind
data Kind : Set where
strong : Kind
other : (k : OtherKind) → Kind
-- Kind equality is decidable.
infix 4 _≟-Kind_
_≟-Kind_ : Decidable (_≡_ {A = Kind})
_≟-Kind_ strong strong = yes P.refl
_≟-Kind_ strong (other k) = no λ()
_≟-Kind_ (other k) strong = no λ()
_≟-Kind_ (other geq) (other geq) = yes P.refl
_≟-Kind_ (other geq) (other weak) = no λ()
_≟-Kind_ (other weak) (other geq) = no λ()
_≟-Kind_ (other weak) (other weak) = yes P.refl
-- A predicate which is satisfied only for equalities. Note that, for
-- concrete inputs, this predicate evaluates to ⊤ or ⊥.
Equality : Kind → Set
Equality k = False (k ≟-Kind other geq)
------------------------------------------------------------------------
-- Equality/ordering
module Equality {A : Set a} -- The "return type".
(_∼_ : A → A → Set ℓ) where
-- The three relations.
data Rel : Kind → A ⊥ → A ⊥ → Set (a ⊔ ℓ) where
now : ∀ {k x y} (x∼y : x ∼ y) → Rel k (now x) (now y)
later : ∀ {k x y} (x∼y : ∞ (Rel k (♭ x) (♭ y))) → Rel k (later x) (later y)
laterʳ : ∀ {x y} (x≈y : Rel (other weak) x (♭ y) ) → Rel (other weak) x (later y)
laterˡ : ∀ {k x y} (x∼y : Rel (other k) (♭ x) y ) → Rel (other k) (later x) y
infix 4 _≅_ _≳_ _≲_ _≈_
_≅_ : A ⊥ → A ⊥ → Set _
_≅_ = Rel strong
_≳_ : A ⊥ → A ⊥ → Set _
_≳_ = Rel (other geq)
_≲_ : A ⊥ → A ⊥ → Set _
_≲_ = flip _≳_
_≈_ : A ⊥ → A ⊥ → Set _
_≈_ = Rel (other weak)
-- x ⇓ y means that x terminates with y.
infix 4 _⇓[_]_ _⇓_
_⇓[_]_ : A ⊥ → Kind → A → Set _
x ⇓[ k ] y = Rel k x (now y)
_⇓_ : A ⊥ → A → Set _
x ⇓ y = x ⇓[ other weak ] y
-- x ⇓ means that x terminates.
infix 4 _⇓
_⇓ : A ⊥ → Set _
x ⇓ = ∃ λ v → x ⇓ v
-- x ⇑ means that x does not terminate.
infix 4 _⇑[_] _⇑
_⇑[_] : A ⊥ → Kind → Set _
x ⇑[ k ] = Rel k x never
_⇑ : A ⊥ → Set _
x ⇑ = x ⇑[ other weak ]
------------------------------------------------------------------------
-- Lemmas relating the three relations
module _ {A : Set a} {_∼_ : A → A → Set ℓ} where
open Equality _∼_ using (Rel; _≅_; _≳_; _≲_; _≈_; _⇓[_]_; _⇑[_])
open Equality.Rel
-- All relations include strong equality.
≅⇒ : ∀ {k} {x y : A ⊥} → x ≅ y → Rel k x y
≅⇒ (now x∼y) = now x∼y
≅⇒ (later x≅y) = later (♯ ≅⇒ (♭ x≅y))
-- The weak equality includes the ordering.
≳⇒ : ∀ {k} {x y : A ⊥} → x ≳ y → Rel (other k) x y
≳⇒ (now x∼y) = now x∼y
≳⇒ (later x≳y) = later (♯ ≳⇒ (♭ x≳y))
≳⇒ (laterˡ x≳y) = laterˡ (≳⇒ x≳y )
-- Weak equality includes the other relations.
⇒≈ : ∀ {k} {x y : A ⊥} → Rel k x y → x ≈ y
⇒≈ {strong} = ≅⇒
⇒≈ {other geq} = ≳⇒
⇒≈ {other weak} = id
-- The relations agree for non-terminating computations.
never⇒never : ∀ {k₁ k₂} {x : A ⊥} →
Rel k₁ x never → Rel k₂ x never
never⇒never (later x∼never) = later (♯ never⇒never (♭ x∼never))
never⇒never (laterʳ x≈never) = never⇒never x≈never
never⇒never (laterˡ x∼never) = later (♯ never⇒never x∼never)
-- The "other" relations agree when the right-hand side is a value.
now⇒now : ∀ {k₁ k₂} {x} {y : A} →
Rel (other k₁) x (now y) → Rel (other k₂) x (now y)
now⇒now (now x∼y) = now x∼y
now⇒now (laterˡ x∼now) = laterˡ (now⇒now x∼now)
------------------------------------------------------------------------
-- Later can be dropped
laterʳ⁻¹ : ∀ {k} {x : A ⊥} {y} →
Rel (other k) x (later y) → Rel (other k) x (♭ y)
laterʳ⁻¹ (later x∼y) = laterˡ (♭ x∼y)
laterʳ⁻¹ (laterʳ x≈y) = x≈y
laterʳ⁻¹ (laterˡ x∼ly) = laterˡ (laterʳ⁻¹ x∼ly)
laterˡ⁻¹ : ∀ {x} {y : A ⊥} → later x ≈ y → ♭ x ≈ y
laterˡ⁻¹ (later x≈y) = laterʳ (♭ x≈y)
laterˡ⁻¹ (laterʳ lx≈y) = laterʳ (laterˡ⁻¹ lx≈y)
laterˡ⁻¹ (laterˡ x≈y) = x≈y
later⁻¹ : ∀ {k} {x y : ∞ (A ⊥)} →
Rel k (later x) (later y) → Rel k (♭ x) (♭ y)
later⁻¹ (later x∼y) = ♭ x∼y
later⁻¹ (laterʳ lx≈y) = laterˡ⁻¹ lx≈y
later⁻¹ (laterˡ x∼ly) = laterʳ⁻¹ x∼ly
------------------------------------------------------------------------
-- The relations are equivalences or partial orders, given suitable
-- assumptions about the underlying relation
module Equivalence where
-- Reflexivity.
refl : Reflexive _∼_ → ∀ {k} → Reflexive (Rel k)
refl refl-∼ {x = now v} = now refl-∼
refl refl-∼ {x = later x} = later (♯ refl refl-∼)
-- Symmetry.
sym : Symmetric _∼_ → ∀ {k} → Equality k → Symmetric (Rel k)
sym sym-∼ eq (now x∼y) = now (sym-∼ x∼y)
sym sym-∼ eq (later x∼y) = later (♯ sym sym-∼ eq (♭ x∼y))
sym sym-∼ eq (laterʳ x≈y) = laterˡ (sym sym-∼ eq x≈y )
sym sym-∼ eq (laterˡ {weak} x≈y) = laterʳ (sym sym-∼ eq x≈y )
-- Transitivity.
private
module Trans (trans-∼ : Transitive _∼_) where
now-trans : ∀ {k x y} {v : A} →
Rel k x y → Rel k y (now v) → Rel k x (now v)
now-trans (now x∼y) (now y∼z) = now (trans-∼ x∼y y∼z)
now-trans (laterˡ x∼y) y∼z = laterˡ (now-trans x∼y y∼z)
now-trans x∼ly (laterˡ y∼z) = now-trans (laterʳ⁻¹ x∼ly) y∼z
mutual
later-trans : ∀ {k} {x y : A ⊥} {z} →
Rel k x y → Rel k y (later z) → Rel k x (later z)
later-trans (later x∼y) ly∼lz = later (♯ trans (♭ x∼y) (later⁻¹ ly∼lz))
later-trans (laterˡ x∼y) y∼lz = later (♯ trans x∼y (laterʳ⁻¹ y∼lz))
later-trans (laterʳ x≈y) ly≈lz = later-trans x≈y (laterˡ⁻¹ ly≈lz)
later-trans x≈y (laterʳ y≈z) = laterʳ ( trans x≈y y≈z )
trans : ∀ {k} {x y z : A ⊥} → Rel k x y → Rel k y z → Rel k x z
trans {z = now v} x∼y y∼v = now-trans x∼y y∼v
trans {z = later z} x∼y y∼lz = later-trans x∼y y∼lz
open Trans public using (trans)
-- All the relations are preorders.
preorder : IsPreorder _≡_ _∼_ → Kind → Preorder _ _ _
preorder pre k = record
{ Carrier = A ⊥
; _≈_ = _≡_
; _≲_ = Rel k
; isPreorder = record
{ isEquivalence = P.isEquivalence
; reflexive = refl′
; trans = Equivalence.trans (IsPreorder.trans pre)
}
}
where
refl′ : ∀ {k} {x y : A ⊥} → x ≡ y → Rel k x y
refl′ P.refl = Equivalence.refl (IsPreorder.refl pre)
private
preorder′ : IsEquivalence _∼_ → Kind → Preorder _ _ _
preorder′ equiv =
preorder (SetoidProperties.isPreorder (record { isEquivalence = equiv }))
-- The two equalities are equivalence relations.
setoid : IsEquivalence _∼_ →
(k : Kind) {eq : Equality k} → Setoid _ _
setoid equiv k {eq} = record
{ Carrier = A ⊥
; _≈_ = Rel k
; isEquivalence = record
{ refl = Pre.refl
; sym = Equivalence.sym (IsEquivalence.sym equiv) eq
; trans = Pre.trans
}
} where module Pre = Preorder (preorder′ equiv k)
-- The order is a partial order, with strong equality as the
-- underlying equality.
≳-poset : IsEquivalence _∼_ → Poset _ _ _
≳-poset equiv = record
{ Carrier = A ⊥
; _≈_ = _≅_
; _≤_ = _≳_
; isPartialOrder = record
{ antisym = antisym
; isPreorder = record
{ isEquivalence = S.isEquivalence
; reflexive = ≅⇒
; trans = Pre.trans
}
}
}
where
module S = Setoid (setoid equiv strong)
module Pre = Preorder (preorder′ equiv (other geq))
antisym : {x y : A ⊥} → x ≳ y → x ≲ y → x ≅ y
antisym (now x∼y) (now _) = now x∼y
antisym (later x≳y) (later x≲y) = later (♯ antisym (♭ x≳y) (♭ x≲y))
antisym (later x≳y) (laterˡ x≲ly) = later (♯ antisym (♭ x≳y) (laterʳ⁻¹ x≲ly))
antisym (laterˡ x≳ly) (later x≲y) = later (♯ antisym (laterʳ⁻¹ x≳ly) (♭ x≲y))
antisym (laterˡ x≳ly) (laterˡ x≲ly) = later (♯ antisym (laterʳ⁻¹ x≳ly) (laterʳ⁻¹ x≲ly))
-- Equational reasoning.
module Reasoning (isEquivalence : IsEquivalence _∼_) where
private
module Pre {k} = Preorder (preorder′ isEquivalence k)
module S {k eq} = Setoid (setoid isEquivalence k {eq})
infix 3 _∎
infixr 2 _≡⟨_⟩_ _≅⟨_⟩_ _≳⟨_⟩_ _≈⟨_⟩_
_≡⟨_⟩_ : ∀ {k} x {y z : A ⊥} → x ≡ y → Rel k y z → Rel k x z
_ ≡⟨ P.refl ⟩ y∼z = y∼z
_≅⟨_⟩_ : ∀ {k} x {y z : A ⊥} → x ≅ y → Rel k y z → Rel k x z
_ ≅⟨ x≅y ⟩ y∼z = Pre.trans (≅⇒ x≅y) y∼z
_≳⟨_⟩_ : ∀ {k} x {y z : A ⊥} →
x ≳ y → Rel (other k) y z → Rel (other k) x z
_ ≳⟨ x≳y ⟩ y∼z = Pre.trans (≳⇒ x≳y) y∼z
_≈⟨_⟩_ : ∀ x {y z : A ⊥} → x ≈ y → y ≈ z → x ≈ z
_ ≈⟨ x≈y ⟩ y≈z = Pre.trans x≈y y≈z
sym : ∀ {k} {eq : Equality k} {x y : A ⊥} →
Rel k x y → Rel k y x
sym {eq = eq} = S.sym {eq = eq}
_∎ : ∀ {k} (x : A ⊥) → Rel k x x
x ∎ = Pre.refl
------------------------------------------------------------------------
-- Lemmas related to now and never
-- Now is not never.
now≉never : ∀ {k} {x : A} → ¬ Rel k (now x) never
now≉never (laterʳ hyp) = now≉never hyp
-- A partial value is either now or never (classically, when the
-- underlying relation is reflexive).
now-or-never : Reflexive _∼_ →
∀ {k} (x : A ⊥) →
¬ ¬ ((∃ λ y → x ⇓[ other k ] y) ⊎ x ⇑[ other k ])
now-or-never refl x = helper <$> ¬¬-excluded-middle
where
open RawMonad ¬¬-Monad
not-now-is-never : (x : A ⊥) → (∄ λ y → x ≳ now y) → x ≳ never
not-now-is-never (now x) hyp with hyp (-, now refl)
... | ()
not-now-is-never (later x) hyp =
later (♯ not-now-is-never (♭ x) (hyp ∘ Prod.map id laterˡ))
helper : Dec (∃ λ y → x ≳ now y) → _
helper (yes ≳now) = inj₁ $ Prod.map id ≳⇒ ≳now
helper (no ≵now) = inj₂ $ ≳⇒ $ not-now-is-never x ≵now
------------------------------------------------------------------------
-- Map-like results
-- Map.
map : ∀ {_∼′_ : A → A → Set a} {k} →
_∼′_ ⇒ _∼_ → Equality.Rel _∼′_ k ⇒ Equality.Rel _∼_ k
map ∼′⇒∼ (now x∼y) = now (∼′⇒∼ x∼y)
map ∼′⇒∼ (later x∼y) = later (♯ map ∼′⇒∼ (♭ x∼y))
map ∼′⇒∼ (laterʳ x≈y) = laterʳ (map ∼′⇒∼ x≈y)
map ∼′⇒∼ (laterˡ x∼y) = laterˡ (map ∼′⇒∼ x∼y)
-- If a statement can be proved using propositional equality as the
-- underlying relation, then it can also be proved for any other
-- reflexive underlying relation.
≡⇒ : Reflexive _∼_ →
∀ {k x y} → Equality.Rel _≡_ k x y → Rel k x y
≡⇒ refl-∼ = map (flip (P.subst (_∼_ _)) refl-∼)
------------------------------------------------------------------------
-- Steps
-- The number of later constructors (steps) in the terminating
-- computation x.
steps : ∀ {k} {x : A ⊥} {y} → x ⇓[ k ] y → ℕ
steps (now _) = zero
steps .{x = later x} (laterˡ {x = x} x⇓) = suc (steps {x = ♭ x} x⇓)
module Steps {trans-∼ : Transitive _∼_} where
left-identity :
∀ {k x y} {z : A}
(x≅y : x ≅ y) (y⇓z : y ⇓[ k ] z) →
steps (Equivalence.trans trans-∼ (≅⇒ x≅y) y⇓z) ≡ steps y⇓z
left-identity (now _) (now _) = P.refl
left-identity (later x≅y) (laterˡ y⇓z) =
P.cong suc $ left-identity (♭ x≅y) y⇓z
right-identity :
∀ {k x} {y z : A}
(x⇓y : x ⇓[ k ] y) (y≈z : now y ⇓[ k ] z) →
steps (Equivalence.trans trans-∼ x⇓y y≈z) ≡ steps x⇓y
right-identity (now x∼y) (now y∼z) = P.refl
right-identity (laterˡ x∼y) (now y∼z) =
P.cong suc $ right-identity x∼y (now y∼z)
------------------------------------------------------------------------
-- Laws related to bind
-- Never is a left and right "zero" of bind.
left-zero : (f : B → A ⊥) → let open M in
(never >>= f) ≅ never
left-zero f = later (♯ left-zero f)
right-zero : (x : B ⊥) → let open M in
(x >>= λ _ → never) ≅ never
right-zero (later x) = later (♯ right-zero (♭ x))
right-zero (now x) = never≅never
where never≅never : never ≅ never
never≅never = later (♯ never≅never)
-- Now is a left and right identity of bind (for a reflexive
-- underlying relation).
left-identity : Reflexive _∼_ →
(x : B) (f : B → A ⊥) → let open M in
(now x >>= f) ≅ f x
left-identity refl-∼ x f = Equivalence.refl refl-∼
right-identity : Reflexive _∼_ →
(x : A ⊥) → let open M in
(x >>= now) ≅ x
right-identity refl (now x) = now refl
right-identity refl (later x) = later (♯ right-identity refl (♭ x))
-- Bind is associative (for a reflexive underlying relation).
associative : Reflexive _∼_ →
(x : C ⊥) (f : C → B ⊥) (g : B → A ⊥) →
let open M in
(x >>= f >>= g) ≅ (x >>= λ y → f y >>= g)
associative refl-∼ (now x) f g = Equivalence.refl refl-∼
associative refl-∼ (later x) f g =
later (♯ associative refl-∼ (♭ x) f g)
module _ {A B : Set s}
{_∼A_ : A → A → Set ℓ}
{_∼B_ : B → B → Set ℓ} where
open Equality
private
open module EqA = Equality _∼A_ using () renaming (_⇓[_]_ to _⇓[_]A_; _⇑[_] to _⇑[_]A)
open module EqB = Equality _∼B_ using () renaming (_⇓[_]_ to _⇓[_]B_; _⇑[_] to _⇑[_]B)
-- Bind preserves all the relations.
infixl 1 _>>=-cong_
_>>=-cong_ :
∀ {k} {x₁ x₂ : A ⊥} {f₁ f₂ : A → B ⊥} → let open M in
Rel _∼A_ k x₁ x₂ →
(∀ {x₁ x₂} → x₁ ∼A x₂ → Rel _∼B_ k (f₁ x₁) (f₂ x₂)) →
Rel _∼B_ k (x₁ >>= f₁) (x₂ >>= f₂)
now x₁∼x₂ >>=-cong f₁∼f₂ = f₁∼f₂ x₁∼x₂
later x₁∼x₂ >>=-cong f₁∼f₂ = later (♯ (♭ x₁∼x₂ >>=-cong f₁∼f₂))
laterʳ x₁≈x₂ >>=-cong f₁≈f₂ = laterʳ (x₁≈x₂ >>=-cong f₁≈f₂)
laterˡ x₁∼x₂ >>=-cong f₁∼f₂ = laterˡ (x₁∼x₂ >>=-cong f₁∼f₂)
-- Inversion lemmas for bind.
>>=-inversion-⇓ :
Reflexive _∼A_ →
∀ {k} x {f : A → B ⊥} {y} → let open M in
(x>>=f⇓ : (x >>= f) ⇓[ k ]B y) →
∃ λ z → ∃₂ λ (x⇓ : x ⇓[ k ]A z) (fz⇓ : f z ⇓[ k ]B y) →
steps x⇓ + steps fz⇓ ≡ steps x>>=f⇓
>>=-inversion-⇓ refl (now x) fx⇓ =
(x , now refl , fx⇓ , P.refl)
>>=-inversion-⇓ refl (later x) (laterˡ x>>=f⇓) =
Prod.map id (Prod.map laterˡ (Prod.map id (P.cong suc))) $
>>=-inversion-⇓ refl (♭ x) x>>=f⇓
>>=-inversion-⇑ : IsEquivalence _∼A_ →
∀ {k} x {f : A → B ⊥} → let open M in
Rel _∼B_ (other k) (x >>= f) never →
¬ ¬ (x ⇑[ other k ]A ⊎
∃ λ y → x ⇓[ other k ]A y × f y ⇑[ other k ]B)
>>=-inversion-⇑ eqA {k} x {f} ∼never =
helper <$> now-or-never IsEqA.refl x
where
open RawMonad ¬¬-Monad using (_<$>_)
open M using (_>>=_)
open Reasoning eqA
module IsEqA = IsEquivalence eqA
k≳ = other geq
is-never : ∀ {x y} →
x ⇓[ k≳ ]A y → (x >>= f) ⇑[ k≳ ]B →
∃ λ z → (y ∼A z) × f z ⇑[ k≳ ]B
is-never (now x∼y) = λ fx⇑ → (_ , IsEqA.sym x∼y , fx⇑)
is-never (laterˡ ≳now) = is-never ≳now ∘ later⁻¹
helper : (∃ λ y → x ⇓[ k≳ ]A y) ⊎ x ⇑[ k≳ ]A →
x ⇑[ other k ]A ⊎
∃ λ y → x ⇓[ other k ]A y × f y ⇑[ other k ]B
helper (inj₂ ≳never) = inj₁ (≳⇒ ≳never)
helper (inj₁ (y , ≳now)) with is-never ≳now (never⇒never ∼never)
... | (z , y∼z , fz⇑) = inj₂ (z , ≳⇒ (x ≳⟨ ≳now ⟩
now y ≅⟨ now y∼z ⟩
now z ∎)
, ≳⇒ fz⇑)
module _ {A B : Set ℓ} {_∼_ : B → B → Set ℓ} where
open Equality
-- A variant of _>>=-cong_.
infixl 1 _≡->>=-cong_
_≡->>=-cong_ :
∀ {k} {x₁ x₂ : A ⊥} {f₁ f₂ : A → B ⊥} → let open M in
Rel _≡_ k x₁ x₂ →
(∀ x → Rel _∼_ k (f₁ x) (f₂ x)) →
Rel _∼_ k (x₁ >>= f₁) (x₂ >>= f₂)
_≡->>=-cong_ {k} {f₁ = f₁} {f₂} x₁≈x₂ f₁≈f₂ =
x₁≈x₂ >>=-cong λ {x} x≡x′ →
P.subst (λ y → Rel _∼_ k (f₁ x) (f₂ y)) x≡x′ (f₁≈f₂ x)
------------------------------------------------------------------------
-- Productivity checker workaround
-- The monad can be awkward to use, due to the limitations of guarded
-- coinduction. The following code provides a (limited) workaround.
module Workaround {a} where
infixl 1 _>>=_
data _⊥P : Set a → Set (Level.suc a) where
now : (x : A) → A ⊥P
later : (x : ∞ (A ⊥P)) → A ⊥P
_>>=_ : (x : A ⊥P) (f : A → B ⊥P) → B ⊥P
private
data _⊥W : Set a → Set (Level.suc a) where
now : (x : A) → A ⊥W
later : (x : A ⊥P) → A ⊥W
mutual
_>>=W_ : A ⊥W → (A → B ⊥P) → B ⊥W
now x >>=W f = whnf (f x)
later x >>=W f = later (x >>= f)
whnf : A ⊥P → A ⊥W
whnf (now x) = now x
whnf (later x) = later (♭ x)
whnf (x >>= f) = whnf x >>=W f
mutual
private
⟦_⟧W : A ⊥W → A ⊥
⟦ now x ⟧W = now x
⟦ later x ⟧W = later (♯ ⟦ x ⟧P)
⟦_⟧P : A ⊥P → A ⊥
⟦ x ⟧P = ⟦ whnf x ⟧W
-- The definitions above make sense. ⟦_⟧P is homomorphic with
-- respect to now, later and _>>=_.
module Correct where
private
open module Eq {A : Set a} = Equality {A = A} _≡_
open module R {A : Set a} = Reasoning (P.isEquivalence {A = A})
now-hom : (x : A) → ⟦ now x ⟧P ≅ now x
now-hom x = now x ∎
later-hom : (x : ∞ (A ⊥P)) → ⟦ later x ⟧P ≅ later (♯ ⟦ ♭ x ⟧P)
later-hom x = later (♯ (⟦ ♭ x ⟧P ∎))
mutual
private
>>=-homW : (x : B ⊥W) (f : B → A ⊥P) →
⟦ x >>=W f ⟧W ≅ M._>>=_ ⟦ x ⟧W (λ y → ⟦ f y ⟧P)
>>=-homW (now x) f = ⟦ f x ⟧P ∎
>>=-homW (later x) f = later (♯ >>=-hom x f)
>>=-hom : (x : B ⊥P) (f : B → A ⊥P) →
⟦ x >>= f ⟧P ≅ M._>>=_ ⟦ x ⟧P (λ y → ⟦ f y ⟧P)
>>=-hom x f = >>=-homW (whnf x) f
------------------------------------------------------------------------
-- An alternative, but equivalent, formulation of equality/ordering
module AlternativeEquality {a ℓ} where
private
El : Setoid a ℓ → Set _
El = Setoid.Carrier
Eq : ∀ S → B.Rel (El S) _
Eq = Setoid._≈_
open Equality using (Rel)
open Equality.Rel
infix 4 _∣_≅P_ _∣_≳P_ _∣_≈P_
infix 3 _∎
infixr 2 _≡⟨_⟩_ _≅⟨_⟩_ _≳⟨_⟩_ _≳⟨_⟩≅_ _≳⟨_⟩≈_ _≈⟨_⟩≅_ _≈⟨_⟩≲_
infixl 1 _>>=_
mutual
-- Proof "programs".
_∣_≅P_ : ∀ S → B.Rel (El S ⊥) _
_∣_≅P_ = flip RelP strong
_∣_≳P_ : ∀ S → B.Rel (El S ⊥) _
_∣_≳P_ = flip RelP (other geq)
_∣_≈P_ : ∀ S → B.Rel (El S ⊥) _
_∣_≈P_ = flip RelP (other weak)
data RelP S : Kind → B.Rel (El S ⊥) (Level.suc (a ⊔ ℓ)) where
-- Congruences.
now : ∀ {k x y} (xRy : x ⟨ Eq S ⟩ y) → RelP S k (now x) (now y)
later : ∀ {k x y} (x∼y : ∞ (RelP S k (♭ x) (♭ y))) →
RelP S k (later x) (later y)
_>>=_ : ∀ {S′ : Setoid a ℓ} {k} {x₁ x₂}
{f₁ f₂ : El S′ → El S ⊥} →
let open M in
(x₁∼x₂ : RelP S′ k x₁ x₂)
(f₁∼f₂ : ∀ {x y} → x ⟨ Eq S′ ⟩ y →
RelP S k (f₁ x) (f₂ y)) →
RelP S k (x₁ >>= f₁) (x₂ >>= f₂)
-- Ordering/weak equality.
laterʳ : ∀ {x y} (x≈y : RelP S (other weak) x (♭ y)) → RelP S (other weak) x (later y)
laterˡ : ∀ {k x y} (x∼y : RelP S (other k) (♭ x) y) → RelP S (other k) (later x) y
-- Equational reasoning. Note that including full transitivity
-- for weak equality would make _∣_≈P_ trivial; a similar
-- problem applies to _∣_≳P_ (A ∣ never ≳P now x would be
-- provable). Instead the definition of RelP includes limited
-- notions of transitivity, similar to weak bisimulation up-to
-- various things.
_∎ : ∀ {k} x → RelP S k x x
sym : ∀ {k x y} {eq : Equality k} (x∼y : RelP S k x y) → RelP S k y x
_≡⟨_⟩_ : ∀ {k} x {y z} (x≡y : x ≡ y) (y∼z : RelP S k y z) → RelP S k x z
_≅⟨_⟩_ : ∀ {k} x {y z} (x≅y : S ∣ x ≅P y) (y∼z : RelP S k y z) → RelP S k x z
_≳⟨_⟩_ : let open Equality (Eq S) in
∀ x {y z} (x≳y : x ≳ y) (y≳z : S ∣ y ≳P z) → S ∣ x ≳P z
_≳⟨_⟩≅_ : ∀ x {y z} (x≳y : S ∣ x ≳P y) (y≅z : S ∣ y ≅P z) → S ∣ x ≳P z
_≳⟨_⟩≈_ : ∀ x {y z} (x≳y : S ∣ x ≳P y) (y≈z : S ∣ y ≈P z) → S ∣ x ≈P z
_≈⟨_⟩≅_ : ∀ x {y z} (x≈y : S ∣ x ≈P y) (y≅z : S ∣ y ≅P z) → S ∣ x ≈P z
_≈⟨_⟩≲_ : ∀ x {y z} (x≈y : S ∣ x ≈P y) (y≲z : S ∣ z ≳P y) → S ∣ x ≈P z
-- If any of the following transitivity-like rules were added to
-- RelP, then RelP and Rel would no longer be equivalent:
--
-- x ≳P y → y ≳P z → x ≳P z
-- x ≳P y → y ≳ z → x ≳P z
-- x ≲P y → y ≈P z → x ≈P z
-- x ≈P y → y ≳P z → x ≈P z
-- x ≲ y → y ≈P z → x ≈P z
-- x ≈P y → y ≳ z → x ≈P z
-- x ≈P y → y ≈P z → x ≈P z
-- x ≈P y → y ≈ z → x ≈P z
-- x ≈ y → y ≈P z → x ≈P z
--
-- The reason is that any of these rules would make it possible
-- to derive that never and now x are related.
-- RelP is complete with respect to Rel.
complete : ∀ {S k} {x y : El S ⊥} →
Equality.Rel (Eq S) k x y → RelP S k x y
complete (now xRy) = now xRy
complete (later x∼y) = later (♯ complete (♭ x∼y))
complete (laterʳ x≈y) = laterʳ (complete x≈y)
complete (laterˡ x∼y) = laterˡ (complete x∼y)
-- RelP is sound with respect to Rel.
private
-- Proof WHNFs.
data RelW S : Kind → B.Rel (El S ⊥) (Level.suc (a ⊔ ℓ)) where
now : ∀ {k x y} (xRy : x ⟨ Eq S ⟩ y) → RelW S k (now x) (now y)
later : ∀ {k x y} (x∼y : RelP S k (♭ x) (♭ y)) → RelW S k (later x) (later y)
laterʳ : ∀ {x y} (x≈y : RelW S (other weak) x (♭ y)) → RelW S (other weak) x (later y)
laterˡ : ∀ {k x y} (x∼y : RelW S (other k) (♭ x) y) → RelW S (other k) (later x) y
-- WHNFs can be turned into programs.
program : ∀ {S k x y} → RelW S k x y → RelP S k x y
program (now xRy) = now xRy
program (later x∼y) = later (♯ x∼y)
program (laterˡ x∼y) = laterˡ (program x∼y)
program (laterʳ x≈y) = laterʳ (program x≈y)
-- Lemmas for WHNFs.
_>>=W_ : ∀ {A B k x₁ x₂} {f₁ f₂ : El A → El B ⊥} →
RelW A k x₁ x₂ →
(∀ {x y} → x ⟨ Eq A ⟩ y → RelW B k (f₁ x) (f₂ y)) →
RelW B k (M._>>=_ x₁ f₁) (M._>>=_ x₂ f₂)
now xRy >>=W f₁∼f₂ = f₁∼f₂ xRy
later x∼y >>=W f₁∼f₂ = later (x∼y >>= program ∘ f₁∼f₂)
laterʳ x≈y >>=W f₁≈f₂ = laterʳ (x≈y >>=W f₁≈f₂)
laterˡ x∼y >>=W f₁∼f₂ = laterˡ (x∼y >>=W f₁∼f₂)
reflW : ∀ {S k} x → RelW S k x x
reflW {S} (now x) = now (Setoid.refl S)
reflW (later x) = later (♭ x ∎)
symW : ∀ {S k x y} → Equality k → RelW S k x y → RelW S k y x
symW {S} eq (now xRy) = now (Setoid.sym S xRy)
symW eq (later x≈y) = later (sym {eq = eq} x≈y)
symW eq (laterʳ x≈y) = laterˡ (symW eq x≈y)
symW eq (laterˡ {weak} x≈y) = laterʳ (symW eq x≈y)
trans≅W : ∀ {S x y z} →
RelW S strong x y → RelW S strong y z → RelW S strong x z
trans≅W {S} (now xRy) (now yRz) = now (Setoid.trans S xRy yRz)
trans≅W (later x≅y) (later y≅z) = later (_ ≅⟨ x≅y ⟩ y≅z)
trans≳-W : ∀ {S x y z} → let open Equality (Eq S) in
x ≳ y → RelW S (other geq) y z → RelW S (other geq) x z
trans≳-W {S} (now xRy) (now yRz) = now (Setoid.trans S xRy yRz)
trans≳-W (later x≳y) (later y≳z) = later (_ ≳⟨ ♭ x≳y ⟩ y≳z)
trans≳-W (later x≳y) (laterˡ y≳z) = laterˡ (trans≳-W (♭ x≳y) y≳z)
trans≳-W (laterˡ x≳y) y≳z = laterˡ (trans≳-W x≳y y≳z)
-- Strong equality programs can be turned into WHNFs.
whnf≅ : ∀ {S x y} → S ∣ x ≅P y → RelW S strong x y
whnf≅ (now xRy) = now xRy
whnf≅ (later x≅y) = later (♭ x≅y)
whnf≅ (x₁≅x₂ >>= f₁≅f₂) = whnf≅ x₁≅x₂ >>=W λ xRy → whnf≅ (f₁≅f₂ xRy)
whnf≅ (x ∎) = reflW x
whnf≅ (sym x≅y) = symW _ (whnf≅ x≅y)
whnf≅ (x ≡⟨ P.refl ⟩ y≅z) = whnf≅ y≅z
whnf≅ (x ≅⟨ x≅y ⟩ y≅z) = trans≅W (whnf≅ x≅y) (whnf≅ y≅z)
-- More transitivity lemmas.
_⟨_⟩≅_ : ∀ {S k} x {y z} →
RelP S k x y → S ∣ y ≅P z → RelP S k x z
_⟨_⟩≅_ {k = strong} x x≅y y≅z = x ≅⟨ x≅y ⟩ y≅z
_⟨_⟩≅_ {k = other geq} x x≳y y≅z = x ≳⟨ x≳y ⟩≅ y≅z
_⟨_⟩≅_ {k = other weak} x x≈y y≅z = x ≈⟨ x≈y ⟩≅ y≅z
trans∼≅W : ∀ {S k x y z} →
RelW S k x y → RelW S strong y z → RelW S k x z
trans∼≅W {S} (now xRy) (now yRz) = now (Setoid.trans S xRy yRz)
trans∼≅W (later x∼y) (later y≅z) = later (_ ⟨ x∼y ⟩≅ y≅z)
trans∼≅W (laterʳ x≈y) (later y≅z) = laterʳ (trans∼≅W x≈y (whnf≅ y≅z))
trans∼≅W (laterˡ x∼y) y≅z = laterˡ (trans∼≅W x∼y y≅z)
trans≅∼W : ∀ {S k x y z} →
RelW S strong x y → RelW S k y z → RelW S k x z
trans≅∼W {S} (now xRy) (now yRz) = now (Setoid.trans S xRy yRz)
trans≅∼W (later x≅y) (later y∼z) = later (_ ≅⟨ x≅y ⟩ y∼z)
trans≅∼W (later x≅y) (laterˡ y∼z) = laterˡ (trans≅∼W (whnf≅ x≅y) y∼z)
trans≅∼W x≅y (laterʳ ly≈z) = laterʳ (trans≅∼W x≅y ly≈z)
-- Order programs can be turned into WHNFs.
whnf≳ : ∀ {S x y} → S ∣ x ≳P y → RelW S (other geq) x y
whnf≳ (now xRy) = now xRy
whnf≳ (later x∼y) = later (♭ x∼y)
whnf≳ (laterˡ x≲y) = laterˡ (whnf≳ x≲y)
whnf≳ (x₁∼x₂ >>= f₁∼f₂) = whnf≳ x₁∼x₂ >>=W λ xRy → whnf≳ (f₁∼f₂ xRy)
whnf≳ (x ∎) = reflW x
whnf≳ (x ≡⟨ P.refl ⟩ y≳z) = whnf≳ y≳z
whnf≳ (x ≅⟨ x≅y ⟩ y≳z) = trans≅∼W (whnf≅ x≅y) (whnf≳ y≳z)
whnf≳ (x ≳⟨ x≳y ⟩ y≳z) = trans≳-W x≳y (whnf≳ y≳z)
whnf≳ (x ≳⟨ x≳y ⟩≅ y≅z) = trans∼≅W (whnf≳ x≳y) (whnf≅ y≅z)
-- Another transitivity lemma.
trans≳≈W : ∀ {S x y z} →
RelW S (other geq) x y → RelW S (other weak) y z →
RelW S (other weak) x z
trans≳≈W {S} (now xRy) (now yRz) = now (Setoid.trans S xRy yRz)
trans≳≈W (later x≳y) (later y≈z) = later (_ ≳⟨ x≳y ⟩≈ y≈z)
trans≳≈W (laterˡ x≳y) y≈z = laterˡ (trans≳≈W x≳y y≈z)
trans≳≈W x≳y (laterʳ y≈z) = laterʳ (trans≳≈W x≳y y≈z)
trans≳≈W (later x≳y) (laterˡ y≈z) = laterˡ (trans≳≈W (whnf≳ x≳y) y≈z)
-- All programs can be turned into WHNFs.
whnf : ∀ {S k x y} → RelP S k x y → RelW S k x y
whnf (now xRy) = now xRy
whnf (later x∼y) = later (♭ x∼y)
whnf (laterʳ x≈y) = laterʳ (whnf x≈y)
whnf (laterˡ x∼y) = laterˡ (whnf x∼y)
whnf (x₁∼x₂ >>= f₁∼f₂) = whnf x₁∼x₂ >>=W λ xRy → whnf (f₁∼f₂ xRy)
whnf (x ∎) = reflW x
whnf (sym {eq = eq} x≈y) = symW eq (whnf x≈y)
whnf (x ≡⟨ P.refl ⟩ y∼z) = whnf y∼z
whnf (x ≅⟨ x≅y ⟩ y∼z) = trans≅∼W (whnf x≅y) (whnf y∼z)
whnf (x ≳⟨ x≳y ⟩ y≳z) = trans≳-W x≳y (whnf y≳z)
whnf (x ≳⟨ x≳y ⟩≅ y≅z) = trans∼≅W (whnf x≳y) (whnf y≅z)
whnf (x ≳⟨ x≳y ⟩≈ y≈z) = trans≳≈W (whnf x≳y) (whnf y≈z)
whnf (x ≈⟨ x≈y ⟩≅ y≅z) = trans∼≅W (whnf x≈y) (whnf y≅z)
whnf (x ≈⟨ x≈y ⟩≲ y≲z) = symW _ (trans≳≈W (whnf y≲z) (symW _ (whnf x≈y)))
mutual
-- Soundness.
private
soundW : ∀ {S k x y} → RelW S k x y → Rel (Eq S) k x y
soundW (now xRy) = now xRy
soundW (later x∼y) = later (♯ sound x∼y)
soundW (laterʳ x≈y) = laterʳ (soundW x≈y)
soundW (laterˡ x∼y) = laterˡ (soundW x∼y)
sound : ∀ {S k x y} → RelP S k x y → Rel (Eq S) k x y
sound x∼y = soundW (whnf x∼y)
-- RelP and Rel are equivalent (when the underlying relation is an
-- equivalence).
correct : ∀ {S k x y} → RelP S k x y ⇔ Rel (Eq S) k x y
correct = mk⇔ sound complete
------------------------------------------------------------------------
-- Another lemma
-- Bind is "idempotent".
idempotent :
(B : Setoid ℓ ℓ) →
let open M; open Setoid B using (_≈_; Carrier); open Equality _≈_ in
(x : A ⊥) (f : A → A → Carrier ⊥) →
(x >>= λ y′ → x >>= λ y″ → f y′ y″) ≳ (x >>= λ y′ → f y′ y′)
idempotent {A = A} B x f = sound (idem x)
where
open AlternativeEquality hiding (_>>=_)
open M
open Equality.Rel using (laterˡ)
open Equivalence using (refl)
idem : (x : A ⊥) →
B ∣ (x >>= λ y′ → x >>= λ y″ → f y′ y″) ≳P
(x >>= λ y′ → f y′ y′)
idem (now x) = f x x ∎
idem (later x) = later (♯ (
(♭ x >>= λ y′ → later x >>= λ y″ → f y′ y″) ≳⟨ (refl P.refl {x = ♭ x} ≡->>=-cong λ _ →
laterˡ (refl (Setoid.refl B))) ⟩
(♭ x >>= λ y′ → ♭ x >>= λ y″ → f y′ y″) ≳⟨ idem (♭ x) ⟩≅
(♭ x >>= λ y′ → f y′ y′) ∎))
------------------------------------------------------------------------
-- Example
private
module Example where
open Data.Nat
open Workaround
-- McCarthy's f91:
f91′ : ℕ → ℕ ⊥P
f91′ n with does (n ≤? 100)
... | true = later (♯ (f91′ (11 + n) >>= f91′))
... | false = now (n ∸ 10)
f91 : ℕ → ℕ ⊥
f91 n = ⟦ f91′ n ⟧P