forked from agda/agda-stdlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProperties.agda
1333 lines (1055 loc) · 52 KB
/
Properties.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
------------------------------------------------------------------------
-- The Agda standard library
--
-- List-related properties
------------------------------------------------------------------------
-- Note that the lemmas below could be generalised to work with other
-- equalities than _≡_.
{-# OPTIONS --cubical-compatible --safe #-}
module Data.List.Properties where
open import Algebra.Bundles
open import Algebra.Definitions as AlgebraicDefinitions using (Involutive)
open import Algebra.Morphism.Structures using (IsMagmaHomomorphism; IsMonoidHomomorphism)
import Algebra.Structures as AlgebraicStructures
open import Data.Bool.Base using (Bool; false; true; not; if_then_else_)
open import Data.Fin.Base using (Fin; zero; suc; cast; toℕ)
open import Data.List.Base as List
open import Data.List.Membership.Propositional using (_∈_)
open import Data.List.Relation.Unary.All using (All; []; _∷_)
open import Data.List.Relation.Unary.Any using (Any; here; there)
open import Data.Maybe.Base as Maybe using (Maybe; just; nothing)
open import Data.Nat.Base
open import Data.Nat.Divisibility using (_∣_; divides; ∣n⇒∣m*n)
open import Data.Nat.Properties
open import Data.Product.Base as Product
using (_×_; _,_; uncurry; uncurry′; proj₁; proj₂; <_,_>)
import Data.Product.Relation.Unary.All as Product using (All)
open import Data.Sum.Base using (_⊎_; inj₁; inj₂)
open import Data.These.Base as These using (These; this; that; these)
open import Data.Fin.Properties using (toℕ-cast)
open import Function.Base using (id; _∘_; _∘′_; _∋_; _-⟨_∣; ∣_⟩-_; _$_; const; flip)
open import Function.Definitions using (Injective)
open import Level using (Level)
open import Relation.Binary.Definitions as B using (DecidableEquality)
import Relation.Binary.Reasoning.Setoid as ≈-Reasoning
open import Relation.Binary.PropositionalEquality as ≡ hiding ([_])
open import Relation.Binary.Core using (Rel)
open import Relation.Nullary.Reflects using (invert)
open import Relation.Nullary using (¬_; Dec; does; _because_; yes; no; contradiction)
open import Relation.Nullary.Decidable as Decidable using (isYes; map′; ⌊_⌋; ¬?; _×-dec_)
open import Relation.Unary using (Pred; Decidable; ∁)
open import Relation.Unary.Properties using (∁?)
import Data.Nat.GeneralisedArithmetic as ℕ
open ≡-Reasoning
private
variable
a b c d e p : Level
A : Set a
B : Set b
C : Set c
D : Set d
E : Set e
------------------------------------------------------------------------
-- _∷_
module _ {x y : A} {xs ys : List A} where
∷-injective : x ∷ xs ≡ y List.∷ ys → x ≡ y × xs ≡ ys
∷-injective refl = (refl , refl)
∷-injectiveˡ : x ∷ xs ≡ y List.∷ ys → x ≡ y
∷-injectiveˡ refl = refl
∷-injectiveʳ : x ∷ xs ≡ y List.∷ ys → xs ≡ ys
∷-injectiveʳ refl = refl
∷-dec : Dec (x ≡ y) → Dec (xs ≡ ys) → Dec (x List.∷ xs ≡ y ∷ ys)
∷-dec x≟y xs≟ys = Decidable.map′ (uncurry (cong₂ _∷_)) ∷-injective (x≟y ×-dec xs≟ys)
≡-dec : DecidableEquality A → DecidableEquality (List A)
≡-dec _≟_ [] [] = yes refl
≡-dec _≟_ (x ∷ xs) [] = no λ()
≡-dec _≟_ [] (y ∷ ys) = no λ()
≡-dec _≟_ (x ∷ xs) (y ∷ ys) = ∷-dec (x ≟ y) (≡-dec _≟_ xs ys)
------------------------------------------------------------------------
-- map
map-id : map id ≗ id {A = List A}
map-id [] = refl
map-id (x ∷ xs) = cong (x ∷_) (map-id xs)
map-id-local : ∀ {f : A → A} {xs} → All (λ x → f x ≡ x) xs → map f xs ≡ xs
map-id-local [] = refl
map-id-local (fx≡x ∷ pxs) = cong₂ _∷_ fx≡x (map-id-local pxs)
map-++ : ∀ (f : A → B) xs ys →
map f (xs ++ ys) ≡ map f xs ++ map f ys
map-++ f [] ys = refl
map-++ f (x ∷ xs) ys = cong (f x ∷_) (map-++ f xs ys)
map-cong : ∀ {f g : A → B} → f ≗ g → map f ≗ map g
map-cong f≗g [] = refl
map-cong f≗g (x ∷ xs) = cong₂ _∷_ (f≗g x) (map-cong f≗g xs)
map-cong-local : ∀ {f g : A → B} {xs} →
All (λ x → f x ≡ g x) xs → map f xs ≡ map g xs
map-cong-local [] = refl
map-cong-local (fx≡gx ∷ fxs≡gxs) = cong₂ _∷_ fx≡gx (map-cong-local fxs≡gxs)
length-map : ∀ (f : A → B) xs → length (map f xs) ≡ length xs
length-map f [] = refl
length-map f (x ∷ xs) = cong suc (length-map f xs)
map-∘ : {g : B → C} {f : A → B} → map (g ∘ f) ≗ map g ∘ map f
map-∘ [] = refl
map-∘ (x ∷ xs) = cong (_ ∷_) (map-∘ xs)
map-injective : ∀ {f : A → B} → Injective _≡_ _≡_ f → Injective _≡_ _≡_ (map f)
map-injective finj {[]} {[]} eq = refl
map-injective finj {x ∷ xs} {y ∷ ys} eq =
let fx≡fy , fxs≡fys = ∷-injective eq in
cong₂ _∷_ (finj fx≡fy) (map-injective finj fxs≡fys)
------------------------------------------------------------------------
-- mapMaybe
mapMaybe-just : (xs : List A) → mapMaybe just xs ≡ xs
mapMaybe-just [] = refl
mapMaybe-just (x ∷ xs) = cong (x ∷_) (mapMaybe-just xs)
mapMaybe-nothing : (xs : List A) →
mapMaybe {B = A} (λ _ → nothing) xs ≡ []
mapMaybe-nothing [] = refl
mapMaybe-nothing (x ∷ xs) = mapMaybe-nothing xs
module _ (f : A → Maybe B) where
mapMaybe-concatMap : mapMaybe f ≗ concatMap (fromMaybe ∘ f)
mapMaybe-concatMap [] = refl
mapMaybe-concatMap (x ∷ xs) with ih ← mapMaybe-concatMap xs | f x
... | just y = cong (y ∷_) ih
... | nothing = ih
length-mapMaybe : ∀ xs → length (mapMaybe f xs) ≤ length xs
length-mapMaybe [] = z≤n
length-mapMaybe (x ∷ xs) with ih ← length-mapMaybe xs | f x
... | just y = s≤s ih
... | nothing = m≤n⇒m≤1+n ih
------------------------------------------------------------------------
-- _++_
length-++ : ∀ (xs : List A) {ys} →
length (xs ++ ys) ≡ length xs + length ys
length-++ [] = refl
length-++ (x ∷ xs) = cong suc (length-++ xs)
module _ {A : Set a} where
open AlgebraicDefinitions {A = List A} _≡_
open AlgebraicStructures {A = List A} _≡_
++-assoc : Associative _++_
++-assoc [] ys zs = refl
++-assoc (x ∷ xs) ys zs = cong (x ∷_) (++-assoc xs ys zs)
++-identityˡ : LeftIdentity [] _++_
++-identityˡ xs = refl
++-identityʳ : RightIdentity [] _++_
++-identityʳ [] = refl
++-identityʳ (x ∷ xs) = cong (x ∷_) (++-identityʳ xs)
++-identity : Identity [] _++_
++-identity = ++-identityˡ , ++-identityʳ
++-identityʳ-unique : ∀ (xs : List A) {ys} → xs ≡ xs ++ ys → ys ≡ []
++-identityʳ-unique [] refl = refl
++-identityʳ-unique (x ∷ xs) eq =
++-identityʳ-unique xs (proj₂ (∷-injective eq))
++-identityˡ-unique : ∀ {xs} (ys : List A) → xs ≡ ys ++ xs → ys ≡ []
++-identityˡ-unique [] _ = refl
++-identityˡ-unique {xs = x ∷ xs} (y ∷ ys) eq
with ++-identityˡ-unique (ys ++ [ x ]) (begin
xs ≡⟨ proj₂ (∷-injective eq) ⟩
ys ++ x ∷ xs ≡⟨ sym (++-assoc ys [ x ] xs) ⟩
(ys ++ [ x ]) ++ xs ∎)
++-identityˡ-unique {xs = x ∷ xs} (y ∷ [] ) eq | ()
++-identityˡ-unique {xs = x ∷ xs} (y ∷ _ ∷ _) eq | ()
++-cancelˡ : LeftCancellative _++_
++-cancelˡ [] _ _ ys≡zs = ys≡zs
++-cancelˡ (x ∷ xs) _ _ x∷xs++ys≡x∷xs++zs = ++-cancelˡ xs _ _ (∷-injectiveʳ x∷xs++ys≡x∷xs++zs)
++-cancelʳ : RightCancellative _++_
++-cancelʳ _ [] [] _ = refl
++-cancelʳ xs [] (z ∷ zs) eq =
contradiction (trans (cong length eq) (length-++ (z ∷ zs))) (m≢1+n+m (length xs))
++-cancelʳ xs (y ∷ ys) [] eq =
contradiction (trans (sym (length-++ (y ∷ ys))) (cong length eq)) (m≢1+n+m (length xs) ∘ sym)
++-cancelʳ _ (y ∷ ys) (z ∷ zs) eq =
cong₂ _∷_ (∷-injectiveˡ eq) (++-cancelʳ _ ys zs (∷-injectiveʳ eq))
++-cancel : Cancellative _++_
++-cancel = ++-cancelˡ , ++-cancelʳ
++-conicalˡ : ∀ (xs ys : List A) → xs ++ ys ≡ [] → xs ≡ []
++-conicalˡ [] _ refl = refl
++-conicalʳ : ∀ (xs ys : List A) → xs ++ ys ≡ [] → ys ≡ []
++-conicalʳ [] _ refl = refl
++-conical : Conical [] _++_
++-conical = ++-conicalˡ , ++-conicalʳ
++-isMagma : IsMagma _++_
++-isMagma = record
{ isEquivalence = isEquivalence
; ∙-cong = cong₂ _++_
}
++-isSemigroup : IsSemigroup _++_
++-isSemigroup = record
{ isMagma = ++-isMagma
; assoc = ++-assoc
}
++-isMonoid : IsMonoid _++_ []
++-isMonoid = record
{ isSemigroup = ++-isSemigroup
; identity = ++-identity
}
module _ (A : Set a) where
++-semigroup : Semigroup a a
++-semigroup = record
{ Carrier = List A
; isSemigroup = ++-isSemigroup
}
++-monoid : Monoid a a
++-monoid = record
{ Carrier = List A
; isMonoid = ++-isMonoid
}
module _ (A : Set a) where
length-isMagmaHomomorphism : IsMagmaHomomorphism (++-rawMagma A) +-rawMagma length
length-isMagmaHomomorphism = record
{ isRelHomomorphism = record
{ cong = cong length
}
; homo = λ xs ys → length-++ xs {ys}
}
length-isMonoidHomomorphism : IsMonoidHomomorphism (++-[]-rawMonoid A) +-0-rawMonoid length
length-isMonoidHomomorphism = record
{ isMagmaHomomorphism = length-isMagmaHomomorphism
; ε-homo = refl
}
------------------------------------------------------------------------
-- cartesianProductWith
module _ (f : A → B → C) where
private
prod = cartesianProductWith f
cartesianProductWith-zeroˡ : ∀ ys → prod [] ys ≡ []
cartesianProductWith-zeroˡ _ = refl
cartesianProductWith-zeroʳ : ∀ xs → prod xs [] ≡ []
cartesianProductWith-zeroʳ [] = refl
cartesianProductWith-zeroʳ (x ∷ xs) = cartesianProductWith-zeroʳ xs
cartesianProductWith-distribʳ-++ : ∀ xs ys zs → prod (xs ++ ys) zs ≡ prod xs zs ++ prod ys zs
cartesianProductWith-distribʳ-++ [] ys zs = refl
cartesianProductWith-distribʳ-++ (x ∷ xs) ys zs = begin
prod (x ∷ xs ++ ys) zs ≡⟨⟩
map (f x) zs ++ prod (xs ++ ys) zs ≡⟨ cong (map (f x) zs ++_) (cartesianProductWith-distribʳ-++ xs ys zs) ⟩
map (f x) zs ++ prod xs zs ++ prod ys zs ≡⟨ ++-assoc (map (f x) zs) (prod xs zs) (prod ys zs) ⟨
(map (f x) zs ++ prod xs zs) ++ prod ys zs ≡⟨⟩
prod (x ∷ xs) zs ++ prod ys zs ∎
------------------------------------------------------------------------
-- alignWith
module _ {f g : These A B → C} where
alignWith-cong : f ≗ g → ∀ as → alignWith f as ≗ alignWith g as
alignWith-cong f≗g [] bs = map-cong (f≗g ∘ that) bs
alignWith-cong f≗g as@(_ ∷ _) [] = map-cong (f≗g ∘ this) as
alignWith-cong f≗g (a ∷ as) (b ∷ bs) =
cong₂ _∷_ (f≗g (these a b)) (alignWith-cong f≗g as bs)
length-alignWith : ∀ xs ys →
length (alignWith f xs ys) ≡ length xs ⊔ length ys
length-alignWith [] ys = length-map (f ∘′ that) ys
length-alignWith xs@(_ ∷ _) [] = length-map (f ∘′ this) xs
length-alignWith (x ∷ xs) (y ∷ ys) = cong suc (length-alignWith xs ys)
alignWith-map : (g : D → A) (h : E → B) →
∀ xs ys → alignWith f (map g xs) (map h ys) ≡
alignWith (f ∘′ These.map g h) xs ys
alignWith-map g h [] ys = sym (map-∘ ys)
alignWith-map g h xs@(_ ∷ _) [] = sym (map-∘ xs)
alignWith-map g h (x ∷ xs) (y ∷ ys) =
cong₂ _∷_ refl (alignWith-map g h xs ys)
map-alignWith : ∀ (g : C → D) → ∀ xs ys →
map g (alignWith f xs ys) ≡
alignWith (g ∘′ f) xs ys
map-alignWith g [] ys = sym (map-∘ ys)
map-alignWith g xs@(_ ∷ _) [] = sym (map-∘ xs)
map-alignWith g (x ∷ xs) (y ∷ ys) =
cong₂ _∷_ refl (map-alignWith g xs ys)
------------------------------------------------------------------------
-- zipWith
module _ (f : A → A → B) where
zipWith-comm : (∀ x y → f x y ≡ f y x) →
∀ xs ys → zipWith f xs ys ≡ zipWith f ys xs
zipWith-comm f-comm [] [] = refl
zipWith-comm f-comm [] (x ∷ ys) = refl
zipWith-comm f-comm (x ∷ xs) [] = refl
zipWith-comm f-comm (x ∷ xs) (y ∷ ys) =
cong₂ _∷_ (f-comm x y) (zipWith-comm f-comm xs ys)
module _ (f : A → B → C) where
zipWith-zeroˡ : ∀ xs → zipWith f [] xs ≡ []
zipWith-zeroˡ [] = refl
zipWith-zeroˡ (x ∷ xs) = refl
zipWith-zeroʳ : ∀ xs → zipWith f xs [] ≡ []
zipWith-zeroʳ [] = refl
zipWith-zeroʳ (x ∷ xs) = refl
length-zipWith : ∀ xs ys →
length (zipWith f xs ys) ≡ length xs ⊓ length ys
length-zipWith [] [] = refl
length-zipWith [] (y ∷ ys) = refl
length-zipWith (x ∷ xs) [] = refl
length-zipWith (x ∷ xs) (y ∷ ys) = cong suc (length-zipWith xs ys)
zipWith-map : ∀ {d e} {D : Set d} {E : Set e} (g : D → A) (h : E → B) →
∀ xs ys → zipWith f (map g xs) (map h ys) ≡
zipWith (λ x y → f (g x) (h y)) xs ys
zipWith-map g h [] [] = refl
zipWith-map g h [] (y ∷ ys) = refl
zipWith-map g h (x ∷ xs) [] = refl
zipWith-map g h (x ∷ xs) (y ∷ ys) =
cong₂ _∷_ refl (zipWith-map g h xs ys)
map-zipWith : ∀ {d} {D : Set d} (g : C → D) → ∀ xs ys →
map g (zipWith f xs ys) ≡
zipWith (λ x y → g (f x y)) xs ys
map-zipWith g [] [] = refl
map-zipWith g [] (y ∷ ys) = refl
map-zipWith g (x ∷ xs) [] = refl
map-zipWith g (x ∷ xs) (y ∷ ys) =
cong₂ _∷_ refl (map-zipWith g xs ys)
------------------------------------------------------------------------
-- unalignWith
unalignWith-this : unalignWith ((A → These A B) ∋ this) ≗ (_, [])
unalignWith-this [] = refl
unalignWith-this (a ∷ as) = cong (Product.map₁ (a ∷_)) (unalignWith-this as)
unalignWith-that : unalignWith ((B → These A B) ∋ that) ≗ ([] ,_)
unalignWith-that [] = refl
unalignWith-that (b ∷ bs) = cong (Product.map₂ (b ∷_)) (unalignWith-that bs)
module _ {f g : C → These A B} where
unalignWith-cong : f ≗ g → unalignWith f ≗ unalignWith g
unalignWith-cong f≗g [] = refl
unalignWith-cong f≗g (c ∷ cs) with f c | g c | f≗g c
... | this a | ._ | refl = cong (Product.map₁ (a ∷_)) (unalignWith-cong f≗g cs)
... | that b | ._ | refl = cong (Product.map₂ (b ∷_)) (unalignWith-cong f≗g cs)
... | these a b | ._ | refl = cong (Product.map (a ∷_) (b ∷_)) (unalignWith-cong f≗g cs)
module _ (f : C → These A B) where
unalignWith-map : (g : D → C) → ∀ ds →
unalignWith f (map g ds) ≡ unalignWith (f ∘′ g) ds
unalignWith-map g [] = refl
unalignWith-map g (d ∷ ds) with f (g d)
... | this a = cong (Product.map₁ (a ∷_)) (unalignWith-map g ds)
... | that b = cong (Product.map₂ (b ∷_)) (unalignWith-map g ds)
... | these a b = cong (Product.map (a ∷_) (b ∷_)) (unalignWith-map g ds)
map-unalignWith : (g : A → D) (h : B → E) →
Product.map (map g) (map h) ∘′ unalignWith f ≗ unalignWith (These.map g h ∘′ f)
map-unalignWith g h [] = refl
map-unalignWith g h (c ∷ cs) with f c
... | this a = cong (Product.map₁ (g a ∷_)) (map-unalignWith g h cs)
... | that b = cong (Product.map₂ (h b ∷_)) (map-unalignWith g h cs)
... | these a b = cong (Product.map (g a ∷_) (h b ∷_)) (map-unalignWith g h cs)
unalignWith-alignWith : (g : These A B → C) → f ∘′ g ≗ id → ∀ as bs →
unalignWith f (alignWith g as bs) ≡ (as , bs)
unalignWith-alignWith g g∘f≗id [] bs = begin
unalignWith f (map (g ∘′ that) bs) ≡⟨ unalignWith-map (g ∘′ that) bs ⟩
unalignWith (f ∘′ g ∘′ that) bs ≡⟨ unalignWith-cong (g∘f≗id ∘ that) bs ⟩
unalignWith that bs ≡⟨ unalignWith-that bs ⟩
[] , bs ∎
unalignWith-alignWith g g∘f≗id as@(_ ∷ _) [] = begin
unalignWith f (map (g ∘′ this) as) ≡⟨ unalignWith-map (g ∘′ this) as ⟩
unalignWith (f ∘′ g ∘′ this) as ≡⟨ unalignWith-cong (g∘f≗id ∘ this) as ⟩
unalignWith this as ≡⟨ unalignWith-this as ⟩
as , [] ∎
unalignWith-alignWith g g∘f≗id (a ∷ as) (b ∷ bs)
rewrite g∘f≗id (these a b) =
cong (Product.map (a ∷_) (b ∷_)) (unalignWith-alignWith g g∘f≗id as bs)
------------------------------------------------------------------------
-- unzipWith
module _ (f : A → B × C) where
length-unzipWith₁ : ∀ xys →
length (proj₁ (unzipWith f xys)) ≡ length xys
length-unzipWith₁ [] = refl
length-unzipWith₁ (x ∷ xys) = cong suc (length-unzipWith₁ xys)
length-unzipWith₂ : ∀ xys →
length (proj₂ (unzipWith f xys)) ≡ length xys
length-unzipWith₂ [] = refl
length-unzipWith₂ (x ∷ xys) = cong suc (length-unzipWith₂ xys)
zipWith-unzipWith : (g : B → C → A) → uncurry′ g ∘ f ≗ id →
uncurry′ (zipWith g) ∘ (unzipWith f) ≗ id
zipWith-unzipWith g f∘g≗id [] = refl
zipWith-unzipWith g f∘g≗id (x ∷ xs) =
cong₂ _∷_ (f∘g≗id x) (zipWith-unzipWith g f∘g≗id xs)
------------------------------------------------------------------------
-- foldr
foldr-universal : ∀ (h : List A → B) f e → (h [] ≡ e) →
(∀ x xs → h (x ∷ xs) ≡ f x (h xs)) →
h ≗ foldr f e
foldr-universal h f e base step [] = base
foldr-universal h f e base step (x ∷ xs) = begin
h (x ∷ xs) ≡⟨ step x xs ⟩
f x (h xs) ≡⟨ cong (f x) (foldr-universal h f e base step xs) ⟩
f x (foldr f e xs) ∎
foldr-cong : ∀ {f g : A → B → B} {d e : B} →
(∀ x y → f x y ≡ g x y) → d ≡ e →
foldr f d ≗ foldr g e
foldr-cong f≗g refl [] = refl
foldr-cong f≗g d≡e (x ∷ xs) rewrite foldr-cong f≗g d≡e xs = f≗g x _
foldr-fusion : ∀ (h : B → C) {f : A → B → B} {g : A → C → C} (e : B) →
(∀ x y → h (f x y) ≡ g x (h y)) →
h ∘ foldr f e ≗ foldr g (h e)
foldr-fusion h {f} {g} e fuse =
foldr-universal (h ∘ foldr f e) g (h e) refl
(λ x xs → fuse x (foldr f e xs))
id-is-foldr : id {A = List A} ≗ foldr _∷_ []
id-is-foldr = foldr-universal id _∷_ [] refl (λ _ _ → refl)
++-is-foldr : (xs ys : List A) → xs ++ ys ≡ foldr _∷_ ys xs
++-is-foldr xs ys = begin
xs ++ ys ≡⟨ cong (_++ ys) (id-is-foldr xs) ⟩
foldr _∷_ [] xs ++ ys ≡⟨ foldr-fusion (_++ ys) [] (λ _ _ → refl) xs ⟩
foldr _∷_ ([] ++ ys) xs ≡⟨⟩
foldr _∷_ ys xs ∎
foldr-++ : ∀ (f : A → B → B) x ys zs →
foldr f x (ys ++ zs) ≡ foldr f (foldr f x zs) ys
foldr-++ f x [] zs = refl
foldr-++ f x (y ∷ ys) zs = cong (f y) (foldr-++ f x ys zs)
map-is-foldr : {f : A → B} → map f ≗ foldr (λ x ys → f x ∷ ys) []
map-is-foldr {f = f} xs = begin
map f xs ≡⟨ cong (map f) (id-is-foldr xs) ⟩
map f (foldr _∷_ [] xs) ≡⟨ foldr-fusion (map f) [] (λ _ _ → refl) xs ⟩
foldr (λ x ys → f x ∷ ys) [] xs ∎
foldr-∷ʳ : ∀ (f : A → B → B) x y ys →
foldr f x (ys ∷ʳ y) ≡ foldr f (f y x) ys
foldr-∷ʳ f x y [] = refl
foldr-∷ʳ f x y (z ∷ ys) = cong (f z) (foldr-∷ʳ f x y ys)
foldr-map : ∀ (f : A → B → B) (g : C → A) x xs → foldr f x (map g xs) ≡ foldr (g -⟨ f ∣) x xs
foldr-map f g x [] = refl
foldr-map f g x (y ∷ xs) = cong (f (g y)) (foldr-map f g x xs)
-- Interaction with predicates
module _ {P : Pred A p} {f : A → A → A} where
foldr-forcesᵇ : (∀ x y → P (f x y) → P x × P y) →
∀ e xs → P (foldr f e xs) → All P xs
foldr-forcesᵇ _ _ [] _ = []
foldr-forcesᵇ forces _ (x ∷ xs) Pfold =
let px , pfxs = forces _ _ Pfold in px ∷ foldr-forcesᵇ forces _ xs pfxs
foldr-preservesᵇ : (∀ {x y} → P x → P y → P (f x y)) →
∀ {e xs} → P e → All P xs → P (foldr f e xs)
foldr-preservesᵇ _ Pe [] = Pe
foldr-preservesᵇ pres Pe (px ∷ pxs) = pres px (foldr-preservesᵇ pres Pe pxs)
foldr-preservesʳ : (∀ x {y} → P y → P (f x y)) →
∀ {e} → P e → ∀ xs → P (foldr f e xs)
foldr-preservesʳ pres Pe [] = Pe
foldr-preservesʳ pres Pe (_ ∷ xs) = pres _ (foldr-preservesʳ pres Pe xs)
foldr-preservesᵒ : (∀ x y → P x ⊎ P y → P (f x y)) →
∀ e xs → P e ⊎ Any P xs → P (foldr f e xs)
foldr-preservesᵒ pres e [] (inj₁ Pe) = Pe
foldr-preservesᵒ pres e (x ∷ xs) (inj₁ Pe) =
pres _ _ (inj₂ (foldr-preservesᵒ pres e xs (inj₁ Pe)))
foldr-preservesᵒ pres e (x ∷ xs) (inj₂ (here px)) = pres _ _ (inj₁ px)
foldr-preservesᵒ pres e (x ∷ xs) (inj₂ (there pxs)) =
pres _ _ (inj₂ (foldr-preservesᵒ pres e xs (inj₂ pxs)))
------------------------------------------------------------------------
-- foldl
foldl-++ : ∀ (f : A → B → A) x ys zs →
foldl f x (ys ++ zs) ≡ foldl f (foldl f x ys) zs
foldl-++ f x [] zs = refl
foldl-++ f x (y ∷ ys) zs = foldl-++ f (f x y) ys zs
foldl-∷ʳ : ∀ (f : A → B → A) x y ys →
foldl f x (ys ∷ʳ y) ≡ f (foldl f x ys) y
foldl-∷ʳ f x y [] = refl
foldl-∷ʳ f x y (z ∷ ys) = foldl-∷ʳ f (f x z) y ys
foldl-map : ∀ (f : A → B → A) (g : C → B) x xs → foldl f x (map g xs) ≡ foldl (∣ f ⟩- g) x xs
foldl-map f g x [] = refl
foldl-map f g x (y ∷ xs) = foldl-map f g (f x (g y)) xs
------------------------------------------------------------------------
-- concat
concat-map : ∀ {f : A → B} → concat ∘ map (map f) ≗ map f ∘ concat
concat-map {f = f} xss = begin
concat (map (map f) xss) ≡⟨ cong concat (map-is-foldr xss) ⟩
concat (foldr (λ xs → map f xs ∷_) [] xss) ≡⟨ foldr-fusion concat [] (λ _ _ → refl) xss ⟩
foldr (λ ys → map f ys ++_) [] xss ≡⟨ sym (foldr-fusion (map f) [] (map-++ f) xss) ⟩
map f (concat xss) ∎
concat-++ : (xss yss : List (List A)) → concat xss ++ concat yss ≡ concat (xss ++ yss)
concat-++ [] yss = refl
concat-++ ([] ∷ xss) yss = concat-++ xss yss
concat-++ ((x ∷ xs) ∷ xss) yss = cong (x ∷_) (concat-++ (xs ∷ xss) yss)
concat-concat : concat {A = A} ∘ map concat ≗ concat ∘ concat
concat-concat [] = refl
concat-concat (xss ∷ xsss) = begin
concat (map concat (xss ∷ xsss)) ≡⟨ cong (concat xss ++_) (concat-concat xsss) ⟩
concat xss ++ concat (concat xsss) ≡⟨ concat-++ xss (concat xsss) ⟩
concat (concat (xss ∷ xsss)) ∎
concat-[-] : concat {A = A} ∘ map [_] ≗ id
concat-[-] [] = refl
concat-[-] (x ∷ xs) = cong (x ∷_) (concat-[-] xs)
------------------------------------------------------------------------
-- concatMap
concatMap-cong : ∀ {f g : A → List B} → f ≗ g → concatMap f ≗ concatMap g
concatMap-cong eq xs = cong concat (map-cong eq xs)
concatMap-pure : concatMap {A = A} [_] ≗ id
concatMap-pure = concat-[-]
concatMap-map : (g : B → List C) → (f : A → B) → (xs : List A) →
concatMap g (map f xs) ≡ concatMap (g ∘′ f) xs
concatMap-map g f xs
= cong concat
{x = map g (map f xs)}
{y = map (g ∘′ f) xs}
(sym $ map-∘ xs)
map-concatMap : (f : B → C) (g : A → List B) →
map f ∘′ concatMap g ≗ concatMap (map f ∘′ g)
map-concatMap f g xs = begin
map f (concatMap g xs)
≡⟨⟩
map f (concat (map g xs))
≡⟨ concat-map (map g xs) ⟨
concat (map (map f) (map g xs))
≡⟨ cong concat
{x = map (map f) (map g xs)}
{y = map (map f ∘′ g) xs}
(sym $ map-∘ xs) ⟩
concat (map (map f ∘′ g) xs)
≡⟨⟩
concatMap (map f ∘′ g) xs
∎
------------------------------------------------------------------------
-- sum
sum-++ : ∀ xs ys → sum (xs ++ ys) ≡ sum xs + sum ys
sum-++ [] ys = refl
sum-++ (x ∷ xs) ys = begin
x + sum (xs ++ ys) ≡⟨ cong (x +_) (sum-++ xs ys) ⟩
x + (sum xs + sum ys) ≡⟨ sym (+-assoc x _ _) ⟩
(x + sum xs) + sum ys ∎
------------------------------------------------------------------------
-- product
∈⇒∣product : ∀ {n ns} → n ∈ ns → n ∣ product ns
∈⇒∣product {n} {n ∷ ns} (here refl) = divides (product ns) (*-comm n (product ns))
∈⇒∣product {n} {m ∷ ns} (there n∈ns) = ∣n⇒∣m*n m (∈⇒∣product n∈ns)
------------------------------------------------------------------------
-- scanr
scanr-defn : ∀ (f : A → B → B) (e : B) →
scanr f e ≗ map (foldr f e) ∘ tails
scanr-defn f e [] = refl
scanr-defn f e (x ∷ []) = refl
scanr-defn f e (x ∷ y∷xs@(_ ∷ _))
with eq ← scanr-defn f e y∷xs
with z ∷ zs ← scanr f e y∷xs
= let z≡fy⦇f⦈xs , _ = ∷-injective eq in cong₂ (λ z → f x z ∷_) z≡fy⦇f⦈xs eq
------------------------------------------------------------------------
-- scanl
scanl-defn : ∀ (f : A → B → A) (e : A) →
scanl f e ≗ map (foldl f e) ∘ inits
scanl-defn f e [] = refl
scanl-defn f e (x ∷ xs) = cong (e ∷_) (begin
scanl f (f e x) xs
≡⟨ scanl-defn f (f e x) xs ⟩
map (foldl f (f e x)) (inits xs)
≡⟨ refl ⟩
map (foldl f e ∘ (x ∷_)) (inits xs)
≡⟨ map-∘ (inits xs) ⟩
map (foldl f e) (map (x ∷_) (inits xs))
∎)
------------------------------------------------------------------------
-- applyUpTo
length-applyUpTo : ∀ (f : ℕ → A) n → length (applyUpTo f n) ≡ n
length-applyUpTo f zero = refl
length-applyUpTo f (suc n) = cong suc (length-applyUpTo (f ∘ suc) n)
lookup-applyUpTo : ∀ (f : ℕ → A) n i → lookup (applyUpTo f n) i ≡ f (toℕ i)
lookup-applyUpTo f (suc n) zero = refl
lookup-applyUpTo f (suc n) (suc i) = lookup-applyUpTo (f ∘ suc) n i
applyUpTo-∷ʳ : ∀ (f : ℕ → A) n → applyUpTo f n ∷ʳ f n ≡ applyUpTo f (suc n)
applyUpTo-∷ʳ f zero = refl
applyUpTo-∷ʳ f (suc n) = cong (f 0 ∷_) (applyUpTo-∷ʳ (f ∘ suc) n)
------------------------------------------------------------------------
-- applyDownFrom
module _ (f : ℕ → A) where
length-applyDownFrom : ∀ n → length (applyDownFrom f n) ≡ n
length-applyDownFrom zero = refl
length-applyDownFrom (suc n) = cong suc (length-applyDownFrom n)
lookup-applyDownFrom : ∀ n i → lookup (applyDownFrom f n) i ≡ f (n ∸ (suc (toℕ i)))
lookup-applyDownFrom (suc n) zero = refl
lookup-applyDownFrom (suc n) (suc i) = lookup-applyDownFrom n i
applyDownFrom-∷ʳ : ∀ n → applyDownFrom (f ∘ suc) n ∷ʳ f 0 ≡ applyDownFrom f (suc n)
applyDownFrom-∷ʳ zero = refl
applyDownFrom-∷ʳ (suc n) = cong (f (suc n) ∷_) (applyDownFrom-∷ʳ n)
------------------------------------------------------------------------
-- upTo
length-upTo : ∀ n → length (upTo n) ≡ n
length-upTo = length-applyUpTo id
lookup-upTo : ∀ n i → lookup (upTo n) i ≡ toℕ i
lookup-upTo = lookup-applyUpTo id
upTo-∷ʳ : ∀ n → upTo n ∷ʳ n ≡ upTo (suc n)
upTo-∷ʳ = applyUpTo-∷ʳ id
------------------------------------------------------------------------
-- downFrom
length-downFrom : ∀ n → length (downFrom n) ≡ n
length-downFrom = length-applyDownFrom id
lookup-downFrom : ∀ n i → lookup (downFrom n) i ≡ n ∸ (suc (toℕ i))
lookup-downFrom = lookup-applyDownFrom id
downFrom-∷ʳ : ∀ n → applyDownFrom suc n ∷ʳ 0 ≡ downFrom (suc n)
downFrom-∷ʳ = applyDownFrom-∷ʳ id
------------------------------------------------------------------------
-- tabulate
tabulate-cong : ∀ {n} {f g : Fin n → A} →
f ≗ g → tabulate f ≡ tabulate g
tabulate-cong {n = zero} p = refl
tabulate-cong {n = suc n} p = cong₂ _∷_ (p zero) (tabulate-cong (p ∘ suc))
tabulate-lookup : ∀ (xs : List A) → tabulate (lookup xs) ≡ xs
tabulate-lookup [] = refl
tabulate-lookup (x ∷ xs) = cong (_ ∷_) (tabulate-lookup xs)
length-tabulate : ∀ {n} → (f : Fin n → A) →
length (tabulate f) ≡ n
length-tabulate {n = zero} f = refl
length-tabulate {n = suc n} f = cong suc (length-tabulate (λ z → f (suc z)))
lookup-tabulate : ∀ {n} → (f : Fin n → A) →
∀ i → let i′ = cast (sym (length-tabulate f)) i
in lookup (tabulate f) i′ ≡ f i
lookup-tabulate f zero = refl
lookup-tabulate f (suc i) = lookup-tabulate (f ∘ suc) i
map-tabulate : ∀ {n} (g : Fin n → A) (f : A → B) →
map f (tabulate g) ≡ tabulate (f ∘ g)
map-tabulate {n = zero} g f = refl
map-tabulate {n = suc n} g f = cong (_ ∷_) (map-tabulate (g ∘ suc) f)
------------------------------------------------------------------------
-- _[_]%=_
length-%= : ∀ xs k (f : A → A) → length (xs [ k ]%= f) ≡ length xs
length-%= (x ∷ xs) zero f = refl
length-%= (x ∷ xs) (suc k) f = cong suc (length-%= xs k f)
------------------------------------------------------------------------
-- _[_]∷=_
length-∷= : ∀ xs k (v : A) → length (xs [ k ]∷= v) ≡ length xs
length-∷= xs k v = length-%= xs k (const v)
map-∷= : ∀ xs k (v : A) (f : A → B) →
let eq = sym (length-map f xs) in
map f (xs [ k ]∷= v) ≡ map f xs [ cast eq k ]∷= f v
map-∷= (x ∷ xs) zero v f = refl
map-∷= (x ∷ xs) (suc k) v f = cong (f x ∷_) (map-∷= xs k v f)
------------------------------------------------------------------------
-- insertAt
length-insertAt : ∀ (xs : List A) (i : Fin (suc (length xs))) v →
length (insertAt xs i v) ≡ suc (length xs)
length-insertAt xs zero v = refl
length-insertAt (x ∷ xs) (suc i) v = cong suc (length-insertAt xs i v)
------------------------------------------------------------------------
-- removeAt
length-removeAt : ∀ (xs : List A) k → length (removeAt xs k) ≡ pred (length xs)
length-removeAt (x ∷ xs) zero = refl
length-removeAt (x ∷ xs@(_ ∷ _)) (suc k) = cong suc (length-removeAt xs k)
length-removeAt′ : ∀ (xs : List A) k → length xs ≡ suc (length (removeAt xs k))
length-removeAt′ xs@(_ ∷ _) k rewrite length-removeAt xs k = refl
map-removeAt : ∀ xs k (f : A → B) →
let eq = sym (length-map f xs) in
map f (removeAt xs k) ≡ removeAt (map f xs) (cast eq k)
map-removeAt (x ∷ xs) zero f = refl
map-removeAt (x ∷ xs) (suc k) f = cong (f x ∷_) (map-removeAt xs k f)
------------------------------------------------------------------------
-- insertAt and removeAt
removeAt-insertAt : ∀ (xs : List A) (i : Fin (suc (length xs))) v →
removeAt (insertAt xs i v) ((cast (sym (length-insertAt xs i v)) i)) ≡ xs
removeAt-insertAt xs zero v = refl
removeAt-insertAt (x ∷ xs) (suc i) v = cong (_ ∷_) (removeAt-insertAt xs i v)
insertAt-removeAt : (xs : List A) (i : Fin (length xs)) →
insertAt (removeAt xs i) (cast (length-removeAt′ xs i) i) (lookup xs i) ≡ xs
insertAt-removeAt (x ∷ xs) zero = refl
insertAt-removeAt (x ∷ xs) (suc i) = cong (x ∷_) (insertAt-removeAt xs i)
------------------------------------------------------------------------
-- take
length-take : ∀ n (xs : List A) → length (take n xs) ≡ n ⊓ (length xs)
length-take zero xs = refl
length-take (suc n) [] = refl
length-take (suc n) (x ∷ xs) = cong suc (length-take n xs)
-- Take commutes with map.
take-map : ∀ {f : A → B} (n : ℕ) xs → take n (map f xs) ≡ map f (take n xs)
take-map zero xs = refl
take-map (suc s) [] = refl
take-map (suc s) (a ∷ xs) = cong (_ ∷_) (take-map s xs)
take-suc : (xs : List A) (i : Fin (length xs)) → let m = toℕ i in
take (suc m) xs ≡ take m xs ∷ʳ lookup xs i
take-suc (x ∷ xs) zero = refl
take-suc (x ∷ xs) (suc i) = cong (x ∷_) (take-suc xs i)
take-suc-tabulate : ∀ {n} (f : Fin n → A) (i : Fin n) → let m = toℕ i in
take (suc m) (tabulate f) ≡ take m (tabulate f) ∷ʳ f i
take-suc-tabulate f i rewrite sym (toℕ-cast (sym (length-tabulate f)) i) | sym (lookup-tabulate f i)
= take-suc (tabulate f) (cast _ i)
-- If you take at least as many elements from a list as it has, you get
-- the whole list.
take-all : (n : ℕ) (xs : List A) → n ≥ length xs → take n xs ≡ xs
take-all zero [] _ = refl
take-all (suc _) [] _ = refl
take-all (suc n) (x ∷ xs) (s≤s pf) = cong (x ∷_) (take-all n xs pf)
-- Taking from an empty list does nothing.
take-[] : ∀ m → take {A = A} m [] ≡ []
take-[] zero = refl
take-[] (suc m) = refl
------------------------------------------------------------------------
-- drop
length-drop : ∀ n (xs : List A) → length (drop n xs) ≡ length xs ∸ n
length-drop zero xs = refl
length-drop (suc n) [] = refl
length-drop (suc n) (x ∷ xs) = length-drop n xs
-- Drop commutes with map.
drop-map : ∀ {f : A → B} (n : ℕ) xs → drop n (map f xs) ≡ map f (drop n xs)
drop-map zero xs = refl
drop-map (suc n) [] = refl
drop-map (suc n) (a ∷ xs) = drop-map n xs
-- Dropping from an empty list does nothing.
drop-[] : ∀ m → drop {A = A} m [] ≡ []
drop-[] zero = refl
drop-[] (suc m) = refl
take++drop≡id : ∀ n (xs : List A) → take n xs ++ drop n xs ≡ xs
take++drop≡id zero xs = refl
take++drop≡id (suc n) [] = refl
take++drop≡id (suc n) (x ∷ xs) = cong (x ∷_) (take++drop≡id n xs)
drop-take-suc : (xs : List A) (i : Fin (length xs)) → let m = toℕ i in
drop m (take (suc m) xs) ≡ [ lookup xs i ]
drop-take-suc (x ∷ xs) zero = refl
drop-take-suc (x ∷ xs) (suc i) = drop-take-suc xs i
drop-take-suc-tabulate : ∀ {n} (f : Fin n → A) (i : Fin n) → let m = toℕ i in
drop m (take (suc m) (tabulate f)) ≡ [ f i ]
drop-take-suc-tabulate f i rewrite sym (toℕ-cast (sym (length-tabulate f)) i) | sym (lookup-tabulate f i)
= drop-take-suc (tabulate f) (cast _ i)
-- Dropping m elements and then n elements is same as dropping m+n elements
drop-drop : (m n : ℕ) → (xs : List A) → drop n (drop m xs) ≡ drop (m + n) xs
drop-drop zero n xs = refl
drop-drop (suc m) n [] = drop-[] n
drop-drop (suc m) n (x ∷ xs) = drop-drop m n xs
drop-all : (n : ℕ) (xs : List A) → n ≥ length xs → drop n xs ≡ []
drop-all n [] _ = drop-[] n
drop-all (suc n) (x ∷ xs) p = drop-all n xs (s≤s⁻¹ p)
------------------------------------------------------------------------
-- replicate
length-replicate : ∀ n {x : A} → length (replicate n x) ≡ n
length-replicate zero = refl
length-replicate (suc n) = cong suc (length-replicate n)
lookup-replicate : ∀ n (x : A) (i : Fin n) →
lookup (replicate n x) (cast (sym (length-replicate n)) i) ≡ x
lookup-replicate (suc n) x zero = refl
lookup-replicate (suc n) x (suc i) = lookup-replicate n x i
map-replicate : ∀ (f : A → B) n (x : A) →
map f (replicate n x) ≡ replicate n (f x)
map-replicate f zero x = refl
map-replicate f (suc n) x = cong (_ ∷_) (map-replicate f n x)
zipWith-replicate : ∀ n (_⊕_ : A → B → C) (x : A) (y : B) →
zipWith _⊕_ (replicate n x) (replicate n y) ≡ replicate n (x ⊕ y)
zipWith-replicate zero _⊕_ x y = refl
zipWith-replicate (suc n) _⊕_ x y = cong (x ⊕ y ∷_) (zipWith-replicate n _⊕_ x y)
------------------------------------------------------------------------
-- iterate
length-iterate : ∀ f (x : A) n → length (iterate f x n) ≡ n
length-iterate f x zero = refl
length-iterate f x (suc n) = cong suc (length-iterate f (f x) n)
iterate-id : ∀ (x : A) n → iterate id x n ≡ replicate n x
iterate-id x zero = refl
iterate-id x (suc n) = cong (_ ∷_) (iterate-id x n)
lookup-iterate : ∀ f (x : A) n (i : Fin n) →
lookup (iterate f x n) (cast (sym (length-iterate f x n)) i) ≡ ℕ.iterate f x (toℕ i)
lookup-iterate f x (suc n) zero = refl
lookup-iterate f x (suc n) (suc i) = lookup-iterate f (f x) n i
------------------------------------------------------------------------
-- splitAt
splitAt-defn : ∀ n → splitAt {A = A} n ≗ < take n , drop n >
splitAt-defn zero xs = refl
splitAt-defn (suc n) [] = refl
splitAt-defn (suc n) (x ∷ xs) = cong (Product.map (x ∷_) id) (splitAt-defn n xs)
------------------------------------------------------------------------
-- takeWhile, dropWhile, and span
module _ {P : Pred A p} (P? : Decidable P) where
takeWhile++dropWhile : ∀ xs → takeWhile P? xs ++ dropWhile P? xs ≡ xs
takeWhile++dropWhile [] = refl
takeWhile++dropWhile (x ∷ xs) with does (P? x)
... | true = cong (x ∷_) (takeWhile++dropWhile xs)
... | false = refl
span-defn : span P? ≗ < takeWhile P? , dropWhile P? >
span-defn [] = refl
span-defn (x ∷ xs) with does (P? x)
... | true = cong (Product.map (x ∷_) id) (span-defn xs)
... | false = refl
------------------------------------------------------------------------
-- filter
module _ {P : Pred A p} (P? : Decidable P) where
length-filter : ∀ xs → length (filter P? xs) ≤ length xs
length-filter [] = z≤n
length-filter (x ∷ xs) with ih ← length-filter xs | does (P? x)
... | false = m≤n⇒m≤1+n ih
... | true = s≤s ih
filter-all : ∀ {xs} → All P xs → filter P? xs ≡ xs
filter-all {[]} [] = refl
filter-all {x ∷ xs} (px ∷ pxs) with P? x
... | false because [¬px] = contradiction px (invert [¬px])
... | true because _ = cong (x ∷_) (filter-all pxs)
filter-notAll : ∀ xs → Any (∁ P) xs → length (filter P? xs) < length xs
filter-notAll (x ∷ xs) (here ¬px) with P? x
... | false because _ = s≤s (length-filter xs)
... | true because [px] = contradiction (invert [px]) ¬px
filter-notAll (x ∷ xs) (there any) with ih ← filter-notAll xs any | does (P? x)
... | false = m≤n⇒m≤1+n ih
... | true = s≤s ih
filter-some : ∀ {xs} → Any P xs → 0 < length (filter P? xs)
filter-some {x ∷ xs} (here px) with P? x
... | true because _ = z<s
... | no ¬px = contradiction px ¬px
filter-some {x ∷ xs} (there pxs) with does (P? x)
... | true = m≤n⇒m≤1+n (filter-some pxs)
... | false = filter-some pxs
filter-none : ∀ {xs} → All (∁ P) xs → filter P? xs ≡ []
filter-none {[]} [] = refl
filter-none {x ∷ xs} (¬px ∷ ¬pxs) with P? x
... | false because _ = filter-none ¬pxs
... | true because [px] = contradiction (invert [px]) ¬px
filter-complete : ∀ {xs} → length (filter P? xs) ≡ length xs →
filter P? xs ≡ xs
filter-complete {[]} eq = refl
filter-complete {x ∷ xs} eq with does (P? x)
... | false = contradiction eq (<⇒≢ (s≤s (length-filter xs)))
... | true = cong (x ∷_) (filter-complete (suc-injective eq))
filter-accept : ∀ {x xs} → P x → filter P? (x ∷ xs) ≡ x ∷ (filter P? xs)
filter-accept {x} Px with P? x
... | true because _ = refl
... | false because [¬Px] = contradiction Px (invert [¬Px])
filter-reject : ∀ {x xs} → ¬ P x → filter P? (x ∷ xs) ≡ filter P? xs
filter-reject {x} ¬Px with P? x
... | true because [Px] = contradiction (invert [Px]) ¬Px
... | false because _ = refl
filter-idem : filter P? ∘ filter P? ≗ filter P?
filter-idem [] = refl
filter-idem (x ∷ xs) with does (P? x) in eq
... | false = filter-idem xs
... | true rewrite eq = cong (x ∷_) (filter-idem xs)
filter-++ : ∀ xs ys → filter P? (xs ++ ys) ≡ filter P? xs ++ filter P? ys
filter-++ [] ys = refl
filter-++ (x ∷ xs) ys with ih ← filter-++ xs ys | does (P? x)
... | true = cong (x ∷_) ih
... | false = ih
------------------------------------------------------------------------