The library has been tested using Agda 2.6.4 and 2.6.4.1.
- Fix statement of
Data.Vec.Properties.toList-replicate
, wherereplicate
was mistakenly applied to the level of the typeA
instead of the variablex
of typeA
.
- The modules and morphisms in
Algebra.Module.Morphism.Structures
are now parametrized by raw bundles rather than lawful bundles, in line with other modules defining morphism structures. - The definitions in
Algebra.Module.Morphism.Construct.Composition
are now parametrized by raw bundles, and as such take a proof of transitivity. - The definitions in
Algebra.Module.Morphism.Construct.Identity
are now parametrized by raw bundles, and as such take a proof of reflexivity.
-
In
Algebra.Properties.Semiring.Mult
:1×-identityʳ ↦ ×-homo-1
-
In
Data.Nat.Divisibility.Core
:*-pres-∣ ↦ Data.Nat.Divisibility.*-pres-∣
-
Algebra.Module.Bundles.Raw
: raw bundles for module-like algebraic structures -
Data.List.Effectful.Foldable
:List
isFoldable
-
Data.Vec.Effectful.Foldable
:Vec
isFoldable
-
Effect.Foldable
: implementation of haskell-likeFoldable
-
Exporting more
Raw
substructures fromAlgebra.Bundles.Ring
:rawNearSemiring : RawNearSemiring _ _ rawRingWithoutOne : RawRingWithoutOne _ _ +-rawGroup : RawGroup _ _
-
In
Algebra.Module.Bundles
, raw bundles are re-exported and the bundles expose their raw counterparts. -
In
Algebra.Module.Construct.DirectProduct
:rawLeftSemimodule : RawLeftSemimodule R m ℓm → RawLeftSemimodule m′ ℓm′ → RawLeftSemimodule R (m ⊔ m′) (ℓm ⊔ ℓm′) rawLeftModule : RawLeftModule R m ℓm → RawLeftModule m′ ℓm′ → RawLeftModule R (m ⊔ m′) (ℓm ⊔ ℓm′) rawRightSemimodule : RawRightSemimodule R m ℓm → RawRightSemimodule m′ ℓm′ → RawRightSemimodule R (m ⊔ m′) (ℓm ⊔ ℓm′) rawRightModule : RawRightModule R m ℓm → RawRightModule m′ ℓm′ → RawRightModule R (m ⊔ m′) (ℓm ⊔ ℓm′) rawBisemimodule : RawBisemimodule R m ℓm → RawBisemimodule m′ ℓm′ → RawBisemimodule R (m ⊔ m′) (ℓm ⊔ ℓm′) rawBimodule : RawBimodule R m ℓm → RawBimodule m′ ℓm′ → RawBimodule R (m ⊔ m′) (ℓm ⊔ ℓm′) rawSemimodule : RawSemimodule R m ℓm → RawSemimodule m′ ℓm′ → RawSemimodule R (m ⊔ m′) (ℓm ⊔ ℓm′) rawModule : RawModule R m ℓm → RawModule m′ ℓm′ → RawModule R (m ⊔ m′) (ℓm ⊔ ℓm′)
-
In
Algebra.Module.Construct.TensorUnit
:rawLeftSemimodule : RawLeftSemimodule _ c ℓ rawLeftModule : RawLeftModule _ c ℓ rawRightSemimodule : RawRightSemimodule _ c ℓ rawRightModule : RawRightModule _ c ℓ rawBisemimodule : RawBisemimodule _ _ c ℓ rawBimodule : RawBimodule _ _ c ℓ rawSemimodule : RawSemimodule _ c ℓ rawModule : RawModule _ c ℓ
-
In
Algebra.Module.Construct.Zero
:rawLeftSemimodule : RawLeftSemimodule R c ℓ rawLeftModule : RawLeftModule R c ℓ rawRightSemimodule : RawRightSemimodule R c ℓ rawRightModule : RawRightModule R c ℓ rawBisemimodule : RawBisemimodule R c ℓ rawBimodule : RawBimodule R c ℓ rawSemimodule : RawSemimodule R c ℓ rawModule : RawModule R c ℓ
-
In
Algebra.Properties.Monoid.Mult
:×-homo-0 : ∀ x → 0 × x ≈ 0# ×-homo-1 : ∀ x → 1 × x ≈ x
-
In
Algebra.Properties.Semiring.Mult
:×-homo-0# : ∀ x → 0 × x ≈ 0# * x ×-homo-1# : ∀ x → 1 × x ≈ 1# * x idem-×-homo-* : (_*_ IdempotentOn x) → (m × x) * (n × x) ≈ (m ℕ.* n) × x
-
In
Data.Fin.Properties
:nonZeroIndex : Fin n → ℕ.NonZero n
-
In
Data.List.Relation.Unary.All.Properties
:All-catMaybes⁺ : All (Maybe.All P) xs → All P (catMaybes xs) Any-catMaybes⁺ : All (Maybe.Any P) xs → All P (catMaybes xs)
-
In
Data.List.Relation.Unary.AllPairs.Properties
:catMaybes⁺ : AllPairs (Pointwise R) xs → AllPairs R (catMaybes xs) tabulate⁺-< : (i < j → R (f i) (f j)) → AllPairs R (tabulate f)
-
In
Data.Maybe.Relation.Binary.Pointwise
:pointwise⊆any : Pointwise R (just x) ⊆ Any (R x)
-
In
Data.Nat.Divisibility
:quotient≢0 : m ∣ n → .{{NonZero n}} → NonZero quotient m∣n⇒n≡quotient*m : m ∣ n → n ≡ quotient * m m∣n⇒n≡m*quotient : m ∣ n → n ≡ m * quotient quotient-∣ : m ∣ n → quotient ∣ n quotient>1 : m ∣ n → m < n → 1 < quotient quotient-< : m ∣ n → .{{NonTrivial m}} → .{{NonZero n}} → quotient < n n/m≡quotient : m ∣ n → .{{_ : NonZero m}} → n / m ≡ quotient m/n≡0⇒m<n : .{{_ : NonZero n}} → m / n ≡ 0 → m < n m/n≢0⇒n≤m : .{{_ : NonZero n}} → m / n ≢ 0 → n ≤ m nonZeroDivisor : DivMod dividend divisor → NonZero divisor
-
Added new proofs in
Data.Nat.Properties
:m≤n+o⇒m∸n≤o : ∀ m n {o} → m ≤ n + o → m ∸ n ≤ o m<n+o⇒m∸n<o : ∀ m n {o} → .{{NonZero o}} → m < n + o → m ∸ n < o pred-cancel-≤ : pred m ≤ pred n → (m ≡ 1 × n ≡ 0) ⊎ m ≤ n pred-cancel-< : pred m < pred n → m < n pred-injective : .{{NonZero m}} → .{{NonZero n}} → pred m ≡ pred n → m ≡ n pred-cancel-≡ : pred m ≡ pred n → ((m ≡ 0 × n ≡ 1) ⊎ (m ≡ 1 × n ≡ 0)) ⊎ m ≡ n
-
Added new functions in
Data.String.Base
:map : (Char → Char) → String → String
-
In
Function.Bundles
, added_⟶ₛ_
as a synonym forFunc
that can be used infix. -
Added new definitions in
Relation.Binary
Stable : Pred A ℓ → Set _
-
Added new definitions in
Relation.Nullary
Recomputable : Set _ WeaklyDecidable : Set _
-
Added new definitions in
Relation.Unary
Stable : Pred A ℓ → Set _ WeaklyDecidable : Pred A ℓ → Set _
-
Added new proof in
Relation.Nullary.Decidable
:⌊⌋-map′ : (a? : Dec A) → ⌊ map′ t f a? ⌋ ≡ ⌊ a? ⌋