forked from agda/agda-stdlib
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathTop.agda
152 lines (125 loc) · 6.45 KB
/
Top.agda
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
------------------------------------------------------------------------
-- The Agda standard library
--
-- Example use of the 'top' view of Fin
--
-- This is an example of a view of (elements of) a datatype,
-- here i : Fin (suc n), which exhibits every such i as
-- * either, i = fromℕ n
-- * or, i = inject₁ j for a unique j : Fin n
--
-- Using this view, we can redefine certain operations in `Data.Fin.Base`,
-- together with their corresponding properties in `Data.Fin.Properties`:
------------------------------------------------------------------------
{-# OPTIONS --cubical-compatible --safe #-}
module README.Data.Fin.Relation.Unary.Top where
open import Data.Nat.Base using (ℕ; zero; suc; _∸_; _≤_)
open import Data.Nat.Properties using (n∸n≡0; +-∸-assoc; ≤-reflexive)
open import Data.Fin.Base using (Fin; zero; suc; toℕ; fromℕ; inject₁; _>_)
open import Data.Fin.Properties using (toℕ-fromℕ; toℕ<n; toℕ-inject₁)
open import Data.Fin.Induction hiding (>-weakInduction)
open import Data.Fin.Relation.Unary.Top
open import Data.Fin.Relation.Unary.Top.Instances
open import Induction.WellFounded as WF
open import Level using (Level)
open import Relation.Binary.PropositionalEquality
open import Relation.Unary using (Pred)
private
variable
ℓ : Level
n : ℕ
i : Fin (suc n)
j : Fin n
------------------------------------------------------------------------
-- Inverting inject₁
-- The principal purpose of this View of Fin (suc n) is that it provides
-- a *partial inverse* to the function inject₁, as follows:
--
-- * pattern matching of the form `... inj j ← view {n} i` ensures that
-- `i ≟ inject₁ j`, and hence that `j` is, *definitionally*, an image
-- under a hypothetical inverse to `inject₁`;
--
-- * such patterns are irrefutable *precisely* when `i` is in the codomain
-- of `inject₁`, which by property `fromℕ≢inject₁`, is equivalent to the
-- condition `i ≢ fromℕ n`, or again equivalently, `toℕ i ≢ n`, each
-- equivalent to `IsInject₁ {n} (view i)`, hence amenable to instance resolution
--
-- Definition
--
-- Rather than redefine `lower₁` of `Data.Fin.Base`, we instead define
inject₁⁻¹ : (i : Fin (suc n)) → .{{IsInject₁ (view i)}} → Fin n
inject₁⁻¹ i with ‵inject₁ j ← view i = j
-- Properties, by analogy with those for `lower₁` in `Data.Fin.Properties`
inject₁-inject₁⁻¹ : (i : Fin (suc n)) .{{_ : IsInject₁ (view i)}} →
inject₁ (inject₁⁻¹ i) ≡ i
inject₁-inject₁⁻¹ i with ‵inj₁ _ ← view i = refl
inject₁⁻¹-inject₁ : (j : Fin n) → inject₁⁻¹ (inject₁ j) ≡ j
inject₁⁻¹-inject₁ j rewrite view-inject₁ j = refl
inject₁≡⇒inject₁⁻¹≡ : (eq : inject₁ {n} j ≡ i) →
let instance _ = inject₁≡⁺ eq in inject₁⁻¹ i ≡ j
inject₁≡⇒inject₁⁻¹≡ refl = inject₁⁻¹-inject₁ _
inject₁⁻¹-injective : (i₁ i₂ : Fin (suc n))
.{{_ : IsInject₁ (view i₁)}}
.{{_ : IsInject₁ (view i₂)}} →
inject₁⁻¹ i₁ ≡ inject₁⁻¹ i₂ → i₁ ≡ i₂
inject₁⁻¹-injective i₁ i₂ with ‵inj₁ _ ← view i₁ | ‵inj₁ _ ← view i₂ = cong inject₁
inject₁⁻¹-irrelevant : (i : Fin (suc n)) .{{ii₁ ii₂ : IsInject₁ (view i)}} →
inject₁⁻¹ i {{ii₁}} ≡ inject₁⁻¹ i {{ii₂}}
inject₁⁻¹-irrelevant i with ‵inj₁ _ ← view i = refl
toℕ-inject₁⁻¹ : (i : Fin (suc n)) .{{_ : IsInject₁ (view i)}} →
toℕ (inject₁⁻¹ i) ≡ toℕ i
toℕ-inject₁⁻¹ i with ‵inject₁ j ← view i = sym (toℕ-inject₁ j)
------------------------------------------------------------------------
-- Reimplementation of `Data.Fin.Base.opposite`, and its properties
-- Definition
opposite : Fin n → Fin n
opposite {suc n} i with view i
... | ‵fromℕ = zero
... | ‵inject₁ j = suc (opposite {n} j)
-- Properties
opposite-zero≡fromℕ : ∀ n → opposite {suc n} zero ≡ fromℕ n
opposite-zero≡fromℕ zero = refl
opposite-zero≡fromℕ (suc n) = cong suc (opposite-zero≡fromℕ n)
opposite-fromℕ≡zero : ∀ n → opposite {suc n} (fromℕ n) ≡ zero
opposite-fromℕ≡zero n rewrite view-fromℕ n = refl
opposite-suc≡inject₁-opposite : (j : Fin n) →
opposite (suc j) ≡ inject₁ (opposite j)
opposite-suc≡inject₁-opposite {suc n} i with view i
... | ‵fromℕ = refl
... | ‵inject₁ j = cong suc (opposite-suc≡inject₁-opposite {n} j)
opposite-involutive : (j : Fin n) → opposite (opposite j) ≡ j
opposite-involutive {suc n} zero
rewrite opposite-zero≡fromℕ n
| view-fromℕ n = refl
opposite-involutive {suc n} (suc i)
rewrite opposite-suc≡inject₁-opposite i
| view-inject₁(opposite i) = cong suc (opposite-involutive i)
opposite-suc : (j : Fin n) → toℕ (opposite (suc j)) ≡ toℕ (opposite j)
opposite-suc j = begin
toℕ (opposite (suc j)) ≡⟨ cong toℕ (opposite-suc≡inject₁-opposite j) ⟩
toℕ (inject₁ (opposite j)) ≡⟨ toℕ-inject₁ (opposite j) ⟩
toℕ (opposite j) ∎ where open ≡-Reasoning
opposite-prop : (j : Fin n) → toℕ (opposite j) ≡ n ∸ suc (toℕ j)
opposite-prop {suc n} i with view i
... | ‵fromℕ rewrite toℕ-fromℕ n | n∸n≡0 n = refl
... | ‵inject₁ j = begin
suc (toℕ (opposite j)) ≡⟨ cong suc (opposite-prop j) ⟩
suc (n ∸ suc (toℕ j)) ≡˘⟨ +-∸-assoc 1 {n} {suc (toℕ j)} (toℕ<n j) ⟩
n ∸ toℕ j ≡˘⟨ cong (n ∸_) (toℕ-inject₁ j) ⟩
n ∸ toℕ (inject₁ j) ∎ where open ≡-Reasoning
------------------------------------------------------------------------
-- Reimplementation of `Data.Fin.Induction.>-weakInduction`
open WF using (Acc; acc)
>-weakInduction : (P : Pred (Fin (suc n)) ℓ) →
P (fromℕ n) →
(∀ i → P (suc i) → P (inject₁ i)) →
∀ i → P i
>-weakInduction {n = n} P Pₙ Pᵢ₊₁⇒Pᵢ i = induct (>-wellFounded i)
where
induct : ∀ {i} → Acc _>_ i → P i
induct {i} (acc rec) with view i
... | ‵fromℕ = Pₙ
... | ‵inject₁ j = Pᵢ₊₁⇒Pᵢ j (induct (rec _ inject₁[j]+1≤[j+1]))
where
inject₁[j]+1≤[j+1] : suc (toℕ (inject₁ j)) ≤ toℕ (suc j)
inject₁[j]+1≤[j+1] = ≤-reflexive (toℕ-inject₁ (suc j))