Skip to content

Commit 67adc1d

Browse files
committed
Fixes agda#2471
1 parent 6633371 commit 67adc1d

File tree

22 files changed

+55
-53
lines changed

22 files changed

+55
-53
lines changed

CHANGELOG.md

+3-1
Original file line numberDiff line numberDiff line change
@@ -19,7 +19,9 @@ Bug-fixes
1919
Non-backwards compatible changes
2020
--------------------------------
2121

22-
In `Function.Related.TypeIsomorphisms`, the unprimed versions are more level polymorphic; and the primed versions retain `Level` homogeneous types for the `Semiring` axioms to hold.
22+
* In `Function.Related.TypeIsomorphisms`, the unprimed versions are more level polymorphic; and the primed versions retain `Level` homogeneous types for the `Semiring` axioms to hold.
23+
24+
* In `Relation.Binary.Definitions`, the left/right order of the components of `_Respects₂_` have been swapped [issue #2471](https://github.com/agda/agda-stdlib/issues/2471).
2325

2426
Minor improvements
2527
------------------

src/Data/Bool/Properties.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -186,7 +186,7 @@ false <? true = yes f<t
186186
true <? _ = no (λ())
187187

188188
<-resp₂-≡ : _<_ Respects₂ _≡_
189-
<-resp₂-≡ = subst (_ <_) , subst (_< _)
189+
<-resp₂-≡ = subst (_< _) , subst (_ <_)
190190

191191
<-irrelevant : Irrelevant _<_
192192
<-irrelevant f<t f<t = refl

src/Data/Char/Properties.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -117,8 +117,8 @@ _<?_ = On.decidable toℕ ℕ._<_ ℕ._<?_
117117
{ isEquivalence = ≡.isEquivalence
118118
; irrefl = <-irrefl
119119
; trans = λ {a} {b} {c} <-trans {a} {b} {c}
120-
; <-resp-≈ = (λ {c} ≡.subst (c <_))
121-
, (λ {c} ≡.subst (_< c))
120+
; <-resp-≈ = (λ {c} ≡.subst (_< c))
121+
, (λ {c} ≡.subst (c <_))
122122
}
123123

124124
<-isStrictTotalOrder : IsStrictTotalOrder _≡_ _<_

src/Data/Fin/Properties.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -392,7 +392,7 @@ m <? n = suc (toℕ m) ℕ.≤? toℕ n
392392
<-respʳ-≡ refl x≤y = x≤y
393393

394394
<-resp₂-≡ : (_<_ {n}) Respects₂ _≡_
395-
<-resp₂-≡ = <-respʳ-≡ , <-respˡ-≡
395+
<-resp₂-≡ = <-respˡ-≡ , <-respʳ-≡
396396

397397
<-irrelevant : Irrelevant (_<_ {m} {n})
398398
<-irrelevant = ℕ.<-irrelevant

src/Data/List/Relation/Binary/Lex.agda

+16-16
Original file line numberDiff line numberDiff line change
@@ -68,36 +68,36 @@ module _ {a ℓ₁ ℓ₂} {A : Set a} {P : Set}
6868

6969
transitive : IsEquivalence _≈_ _≺_ Respects₂ _≈_ Transitive _≺_
7070
Transitive _<_
71-
transitive eq resp tr = trans
71+
transitive eq resp@(respˡ , respʳ) tr = trans
7272
where
7373
trans : Transitive (Lex P _≈_ _≺_)
7474
trans (base p) (base _) = base p
7575
trans (base y) halt = halt
7676
trans halt (this y≺z) = halt
7777
trans halt (next y≈z ys<zs) = halt
7878
trans (this x≺y) (this y≺z) = this (tr x≺y y≺z)
79-
trans (this x≺y) (next y≈z ys<zs) = this (proj₁ resp y≈z x≺y)
79+
trans (this x≺y) (next y≈z ys<zs) = this (respʳ y≈z x≺y)
8080
trans (next x≈y xs<ys) (this y≺z) =
81-
this (proj₂ resp (IsEquivalence.sym eq x≈y) y≺z)
81+
this (respˡ (IsEquivalence.sym eq x≈y) y≺z)
8282
trans (next x≈y xs<ys) (next y≈z ys<zs) =
8383
next (IsEquivalence.trans eq x≈y y≈z) (trans xs<ys ys<zs)
8484

8585
respects₂ : IsEquivalence _≈_ _≺_ Respects₂ _≈_ _<_ Respects₂ _≋_
86-
respects₂ eq (resp₁ , resp₂) = resp¹ , resp²
86+
respects₂ eq (respˡ , respʳ) = respₗ , respᵣ
8787
where
8888
open IsEquivalence eq using (sym; trans)
89-
resp¹ : {xs} Lex P _≈_ _≺_ xs Respects _≋_
90-
resp¹ [] xs<[] = xs<[]
91-
resp¹ (_ ∷ _) halt = halt
92-
resp¹ (x≈y ∷ _) (this z≺x) = this (resp₁ x≈y z≺x)
93-
resp¹ (x≈y ∷ xs≋ys) (next z≈x zs<xs) =
94-
next (trans z≈x x≈y) (resp¹ xs≋ys zs<xs)
95-
96-
resp² : {ys} flip (Lex P _≈_ _≺_) ys Respects _≋_
97-
resp² [] []<ys = []<ys
98-
resp² (x≈z ∷ _) (this x≺y) = this (resp₂ x≈z x≺y)
99-
resp² (x≈z ∷ xs≋zs) (next x≈y xs<ys) =
100-
next (trans (sym x≈z) x≈y) (resp² xs≋zs xs<ys)
89+
respᵣ : {xs} Lex P _≈_ _≺_ xs Respects _≋_
90+
respᵣ [] xs<[] = xs<[]
91+
respᵣ (_ ∷ _) halt = halt
92+
respᵣ (x≈y ∷ _) (this z≺x) = this (respʳ x≈y z≺x)
93+
respᵣ (x≈y ∷ xs≋ys) (next z≈x zs<xs) =
94+
next (trans z≈x x≈y) (respᵣ xs≋ys zs<xs)
95+
96+
respₗ : {ys} flip (Lex P _≈_ _≺_) ys Respects _≋_
97+
respₗ [] []<ys = []<ys
98+
respₗ (x≈z ∷ _) (this x≺y) = this (respˡ x≈z x≺y)
99+
respₗ (x≈z ∷ xs≋zs) (next x≈y xs<ys) =
100+
next (trans (sym x≈z) x≈y) (respₗ xs≋zs xs<ys)
101101

102102

103103
[]<[]-⇔ : P ⇔ [] < []

src/Data/List/Relation/Binary/Pointwise.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -119,8 +119,8 @@ Any-resp-Pointwise resp (x∼y ∷ xs) (there pxs) =
119119
AllPairs-resp-Pointwise : R Respects₂ S
120120
(AllPairs R) Respects (Pointwise S)
121121
AllPairs-resp-Pointwise _ [] [] = []
122-
AllPairs-resp-Pointwise resp@(respₗ , respᵣ) (x∼y ∷ xs) (px ∷ pxs) =
123-
All-resp-Pointwise respₗ xs (All.map (respᵣ x∼y) px) ∷
122+
AllPairs-resp-Pointwise resp@(respˡ , respʳ) (x∼y ∷ xs) (px ∷ pxs) =
123+
All-resp-Pointwise respʳ xs (All.map (respˡ x∼y) px) ∷
124124
(AllPairs-resp-Pointwise resp xs pxs)
125125

126126
------------------------------------------------------------------------

src/Data/List/Relation/Binary/Pointwise/Properties.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -62,7 +62,7 @@ respˡ resp [] [] = []
6262
respˡ resp (x≈y ∷ xs≈ys) (x∼z ∷ xs∼zs) = resp x≈y x∼z ∷ respˡ resp xs≈ys xs∼zs
6363

6464
respects₂ : R Respects₂ S (Pointwise R) Respects₂ (Pointwise S)
65-
respects₂ ( , ) = respʳ rʳ , respˡ rˡ
65+
respects₂ ( , ) = respˡ rˡ , respʳ rʳ
6666

6767
decidable : Decidable R Decidable (Pointwise R)
6868
decidable _ [] [] = yes []

src/Data/Nat/Properties.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -404,7 +404,7 @@ _>?_ = flip _<?_
404404
<-irrelevant = ≤-irrelevant
405405

406406
<-resp₂-≡ : _<_ Respects₂ _≡_
407-
<-resp₂-≡ = subst (_ <_) , subst (_< _)
407+
<-resp₂-≡ = subst (_< _) , subst (_ <_)
408408

409409
------------------------------------------------------------------------
410410
-- Bundles

src/Data/Sum/Relation/Binary/Pointwise.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -111,7 +111,7 @@ drop-inj₂ (inj₂ x) = x
111111

112112
⊎-respects₂ : R Respects₂ ≈₁ S Respects₂ ≈₂
113113
(Pointwise R S) Respects₂ (Pointwise ≈₁ ≈₂)
114-
⊎-respects₂ (r₁ , l₁) (r₂ , l₂) = ⊎-respectsʳ r₁ r₂ , ⊎-respectsˡ l₁ l
114+
⊎-respects₂ (l₁ , r₁) (l₂ , r₂) = ⊎-respectsˡ l₁ l₂ , ⊎-respectsʳ r₁ r
115115

116116
------------------------------------------------------------------------
117117
-- Structures

src/Relation/Binary/Consequences.agda

+5-5
Original file line numberDiff line numberDiff line change
@@ -37,7 +37,7 @@ module _ {_∼_ : Rel A ℓ} (R : Rel A p) where
3737
subst⇒respʳ subst {x} y′∼y Pxy′ = subst (R x) y′∼y Pxy′
3838

3939
subst⇒resp₂ : Substitutive _∼_ p R Respects₂ _∼_
40-
subst⇒resp₂ subst = subst⇒respʳ subst , subst⇒respˡ subst
40+
subst⇒resp₂ subst = subst⇒respˡ subst , subst⇒respʳ subst
4141

4242
module _ {_∼_ : Rel A ℓ} {P : Pred A p} where
4343

@@ -74,7 +74,7 @@ module _ {_≈_ : Rel A ℓ₁} {_≤_ : Rel A ℓ₂} where
7474

7575
total⇒refl : _≤_ Respects₂ _≈_ Symmetric _≈_
7676
Total _≤_ _≈_ ⇒ _≤_
77-
total⇒refl (respʳ , respˡ) sym total {x} {y} x≈y with total x y
77+
total⇒refl (respˡ , respʳ) sym total {x} {y} x≈y with total x y
7878
... | inj₁ x∼y = x∼y
7979
... | inj₂ y∼x = respʳ x≈y (respˡ (sym x≈y) y∼x)
8080

@@ -125,7 +125,7 @@ module _ {_≈_ : Rel A ℓ₁} {_<_ : Rel A ℓ₂} where
125125

126126
asym⇒irr : _<_ Respects₂ _≈_ Symmetric _≈_
127127
Asymmetric _<_ Irreflexive _≈_ _<_
128-
asym⇒irr (respʳ , respˡ) sym asym {x} {y} x≈y x<y =
128+
asym⇒irr (respˡ , respʳ) sym asym {x} {y} x≈y x<y =
129129
asym x<y (respʳ (sym x≈y) (respˡ x≈y x<y))
130130

131131
tri⇒asym : Trichotomous _≈_ _<_ Asymmetric _<_
@@ -172,8 +172,8 @@ module _ {_≈_ : Rel A ℓ₁} {_<_ : Rel A ℓ₂} where
172172
Transitive _<_ Trichotomous _≈_ _<_
173173
_<_ Respects₂ _≈_
174174
trans∧tri⇒resp sym ≈-tr <-tr tri =
175-
trans∧tri⇒respʳ sym ≈-tr <-tr tri ,
176-
trans∧tri⇒respˡ ≈-tr <-tr tri
175+
trans∧tri⇒respˡ ≈-tr <-tr tri ,
176+
trans∧tri⇒respʳ sym ≈-tr <-tr tri
177177

178178
------------------------------------------------------------------------
179179
-- Without Loss of Generality

src/Relation/Binary/Construct/Add/Supremum/Strict.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -97,7 +97,7 @@ module _ {r} {_≤_ : Rel A r} where
9797
<⁺-respʳ-≡ = subst (_ <⁺_)
9898

9999
<⁺-resp-≡ : _<⁺_ Respects₂ _≡_
100-
<⁺-resp-≡ = <⁺-respʳ-≡ , <⁺-respˡ-≡
100+
<⁺-resp-≡ = <⁺-respˡ-≡ , <⁺-respʳ-≡
101101

102102
------------------------------------------------------------------------
103103
-- Relational properties + setoid equality
@@ -128,7 +128,7 @@ module _ {e} {_≈_ : Rel A e} where
128128
<⁺-respʳ-≈⁺ <-respʳ-≈ ⊤⁺≈⊤⁺ q = q
129129

130130
<⁺-resp-≈⁺ : _<_ Respects₂ _≈_ _<⁺_ Respects₂ _≈⁺_
131-
<⁺-resp-≈⁺ = map <⁺-respʳ-≈⁺ <⁺-respˡ-≈⁺
131+
<⁺-resp-≈⁺ = map <⁺-respˡ-≈⁺ <⁺-respʳ-≈⁺
132132

133133
------------------------------------------------------------------------
134134
-- Structures + propositional equality

src/Relation/Binary/Construct/Composition.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -57,7 +57,7 @@ module _ {≈ : Rel C ℓ} (L : REL A B ℓ₁) (R : REL B C ℓ₂) where
5757
module _ {≈ : Rel A ℓ} (L : REL A B ℓ₁) (R : REL B A ℓ₂) where
5858

5959
respects₂ : L Respectsˡ ≈ R Respectsʳ ≈ (L ; R) Respects₂ ≈
60-
respects₂ Lˡ Rʳ = respectsʳ L R , respectsˡ L R
60+
respects₂ Lˡ Rʳ = respectsˡ L R , respectsʳ L R
6161

6262
module _ {≈ : REL A B ℓ} (L : REL A B ℓ₁) (R : Rel B ℓ₂) where
6363

src/Relation/Binary/Construct/Intersection.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -76,7 +76,7 @@ module _ (≈ : Rel A ℓ₁) (L : Rel A ℓ₂) (R : Rel A ℓ₃) where
7676
respectsʳ L-resp R-resp x≈y = map (L-resp x≈y) (R-resp x≈y)
7777

7878
respects₂ : L Respects₂ ≈ R Respects₂ ≈ (L ∩ R) Respects₂ ≈
79-
respects₂ ( , ) ( , ) = respectsʳ Lʳ Rʳ , respectsˡ Lˡ Rˡ
79+
respects₂ ( , ) ( , ) = respectsˡ Lˡ Rˡ , respectsʳ Lʳ Rʳ
8080

8181
antisymmetric : Antisymmetric ≈ L ⊎ Antisymmetric ≈ R Antisymmetric ≈ (L ∩ R)
8282
antisymmetric (inj₁ L-antisym) (Lxy , _) (Lyx , _) = L-antisym Lxy Lyx

src/Relation/Binary/Construct/NaturalOrder/Left.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -85,7 +85,7 @@ respˡ magma {x} {y} {z} y≈z y≤x = begin
8585
where open module M = IsMagma magma; open ≈-Reasoning M.setoid
8686

8787
resp₂ : IsMagma _∙_ _≤_ Respects₂ _≈_
88-
resp₂ magma = respʳ magma , respˡ magma
88+
resp₂ magma = respˡ magma , respʳ magma
8989

9090
dec : Decidable _≈_ Decidable _≤_
9191
dec _≟_ x y = x ≟ (x ∙ y)

src/Relation/Binary/Construct/NaturalOrder/Right.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -86,7 +86,7 @@ respˡ magma {x} {y} {z} y≈z y≤x = begin
8686
where open module M = IsMagma magma; open ≈-Reasoning M.setoid
8787

8888
resp₂ : IsMagma _∙_ _≤_ Respects₂ _≈_
89-
resp₂ magma = respʳ magma , respˡ magma
89+
resp₂ magma = respˡ magma , respʳ magma
9090

9191
dec : Decidable _≈_ Decidable _≤_
9292
dec _≟_ x y = x ≟ (y ∙ x)

src/Relation/Binary/Construct/NonStrictToStrict.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -99,8 +99,8 @@ x < y = x ≤ y × x ≉ y
9999
(respʳ y≈z x≤y) , λ x≈z x≉y (trans x≈z (sym y≈z))
100100

101101
<-resp-≈ : IsEquivalence _≈_ _≤_ Respects₂ _≈_ _<_ Respects₂ _≈_
102-
<-resp-≈ eq (respʳ , respˡ) =
103-
<-respʳ-≈ sym trans respʳ , <-respˡ-≈ trans respˡ
102+
<-resp-≈ eq (respˡ , respʳ) =
103+
<-respˡ-≈ trans respˡ , <-respʳ-≈ sym trans respʳ
104104
where open IsEquivalence eq
105105

106106
<-trichotomous : Symmetric _≈_ Decidable _≈_

src/Relation/Binary/Definitions.agda

+3-3
Original file line numberDiff line numberDiff line change
@@ -185,17 +185,17 @@ P Respects _∼_ = P ⟶ P Respects _∼_
185185
-- Right respecting - relatedness is preserved on the right by equality.
186186

187187
_Respectsʳ_ : REL A B ℓ₁ Rel B ℓ₂ Set _
188-
_∼_ Respectsʳ _≈_ = {x} (x ∼_) Respects _≈_
188+
R Respectsʳ _≈_ = {x} (R x) Respects _≈_
189189

190190
-- Left respecting - relatedness is preserved on the left by equality.
191191

192192
_Respectsˡ_ : REL A B ℓ₁ Rel A ℓ₂ Set _
193-
P Respectsˡ _∼_ = {y} (flip P y) Respects _∼_
193+
R Respectsˡ _∼_ = {y} (flip R y) Respects _∼_
194194

195195
-- Respecting - relatedness is preserved on both sides by equality
196196

197197
_Respects₂_ : Rel A ℓ₁ Rel A ℓ₂ Set _
198-
P Respects₂ _∼_ = (P Respectsʳ _∼_) × (P Respectsˡ _∼_)
198+
R Respects₂ _∼_ = (R Respectsˡ _∼_) × (R Respectsʳ _∼_)
199199

200200
-- Substitutivity - any two related elements satisfy exactly the same
201201
-- set of unary relations. Note that only the various derivatives

src/Relation/Binary/Properties/Setoid.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -78,7 +78,7 @@ preorder = record
7878
≉-respʳ y≈y′ x≉y x≈y′ = x≉y $ trans x≈y′ (sym y≈y′)
7979

8080
≉-resp₂ : _≉_ Respects₂ _≈_
81-
≉-resp₂ = ≉-respʳ , ≉-respˡ
81+
≉-resp₂ = ≉-respˡ , ≉-respʳ
8282

8383
≉-irrefl : Irreflexive _≈_ _≉_
8484
≉-irrefl x≈y x≉y = contradiction x≈y x≉y

src/Relation/Binary/PropositionalEquality/Core.agda

+1-1
Original file line numberDiff line numberDiff line change
@@ -93,7 +93,7 @@ respʳ : ∀ (∼ : Rel A ℓ) → ∼ Respectsʳ _≡_
9393
respʳ _∼_ refl x∼y = x∼y
9494

9595
resp₂ : (∼ : Rel A ℓ) ∼ Respects₂ _≡_
96-
resp₂ _∼_ = respʳ _∼_ , respˡ _∼_
96+
resp₂ _∼_ = respˡ _∼_ , respʳ _∼_
9797

9898
------------------------------------------------------------------------
9999
-- Properties of _≢_

src/Relation/Binary/Reasoning/Base/Triple.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -55,15 +55,15 @@ start (strict x<y) = <⇒≤ x<y
5555
≈-go : Trans _≈_ _IsRelatedTo_ _IsRelatedTo_
5656
≈-go x≈y (equals y≈z) = equals (Eq.trans x≈y y≈z)
5757
≈-go x≈y (nonstrict y≤z) = nonstrict (∼-respˡ-≈ (Eq.sym x≈y) y≤z)
58-
≈-go x≈y (strict y<z) = strict (proj <-resp-≈ (Eq.sym x≈y) y<z)
58+
≈-go x≈y (strict y<z) = strict (proj <-resp-≈ (Eq.sym x≈y) y<z)
5959

6060
≤-go : Trans _≤_ _IsRelatedTo_ _IsRelatedTo_
6161
≤-go x≤y (equals y≈z) = nonstrict (∼-respʳ-≈ y≈z x≤y)
6262
≤-go x≤y (nonstrict y≤z) = nonstrict (trans x≤y y≤z)
6363
≤-go x≤y (strict y<z) = strict (≤-<-trans x≤y y<z)
6464

6565
<-go : Trans _<_ _IsRelatedTo_ _IsRelatedTo_
66-
<-go x<y (equals y≈z) = strict (proj <-resp-≈ y≈z x<y)
66+
<-go x<y (equals y≈z) = strict (proj <-resp-≈ y≈z x<y)
6767
<-go x<y (nonstrict y≤z) = strict (<-≤-trans x<y y≤z)
6868
<-go x<y (strict y<z) = strict (<-trans x<y y<z)
6969

src/Relation/Binary/Structures.agda

+5-5
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@ record IsPreorder (_≲_ : Rel A ℓ₂) : Set (a ⊔ ℓ ⊔ ℓ₂) where
9292
≲-respʳ-≈ x≈y z∼x = trans z∼x (reflexive x≈y)
9393

9494
≲-resp-≈ : _≲_ Respects₂ _≈_
95-
≲-resp-≈ = ≲-respʳ-≈ , ≲-respˡ-≈
95+
≲-resp-≈ = ≲-respˡ-≈ , ≲-respʳ-≈
9696

9797
∼-respˡ-≈ = ≲-respˡ-≈
9898
{-# WARNING_ON_USAGE ∼-respˡ-≈
@@ -189,11 +189,11 @@ record IsStrictPartialOrder (_<_ : Rel A ℓ₂) : Set (a ⊔ ℓ ⊔ ℓ₂) wh
189189
asym : Asymmetric _<_
190190
asym {x} {y} = trans∧irr⇒asym Eq.refl trans irrefl {x = x} {y}
191191

192-
<-respʳ-≈ : _<_ Respectsʳ _≈_
193-
<-respʳ-≈ = proj₁ <-resp-≈
194-
195192
<-respˡ-≈ : _<_ Respectsˡ _≈_
196-
<-respˡ-≈ = proj₂ <-resp-≈
193+
<-respˡ-≈ = proj₁ <-resp-≈
194+
195+
<-respʳ-≈ : _<_ Respectsʳ _≈_
196+
<-respʳ-≈ = proj₂ <-resp-≈
197197

198198

199199
record IsDecStrictPartialOrder (_<_ : Rel A ℓ₂) : Set (a ⊔ ℓ ⊔ ℓ₂) where

src/Relation/Unary/Properties.agda

+2-2
Original file line numberDiff line numberDiff line change
@@ -96,7 +96,7 @@ U-Universal = λ _ → _
9696
⊂-respˡ-≐ (_ , R⊆Q) P⊂Q = ⊆-⊂-trans R⊆Q P⊂Q
9797

9898
⊂-resp-≐ : _Respects₂_ {A = Pred A ℓ} _⊂_ _≐_
99-
⊂-resp-≐ = ⊂-respʳ-≐ , ⊂-respˡ-≐
99+
⊂-resp-≐ = ⊂-respˡ-≐ , ⊂-respʳ-≐
100100

101101
⊂-irrefl : Irreflexive {A = Pred A ℓ₁} {B = Pred A ℓ₂} _≐_ _⊂_
102102
⊂-irrefl (_ , Q⊆P) (_ , Q⊈P) = Q⊈P Q⊆P
@@ -150,7 +150,7 @@ U-Universal = λ _ → _
150150
⊂′-respˡ-≐′ (_ , R⊆Q) P⊂Q = ⊆′-⊂′-trans R⊆Q P⊂Q
151151

152152
⊂′-resp-≐′ : _Respects₂_ {A = Pred A ℓ₁} _⊂′_ _≐′_
153-
⊂′-resp-≐′ = ⊂′-respʳ-≐′ , ⊂′-respˡ-≐′
153+
⊂′-resp-≐′ = ⊂′-respˡ-≐′ , ⊂′-respʳ-≐′
154154

155155
⊂′-irrefl : Irreflexive {A = Pred A ℓ₁} {B = Pred A ℓ₂} _≐′_ _⊂′_
156156
⊂′-irrefl (_ , Q⊆P) (_ , Q⊈P) = Q⊈P Q⊆P

0 commit comments

Comments
 (0)