@@ -1636,41 +1636,6 @@ Other minor changes
1636
1636
moufangLoop : MoufangLoop a ℓ₁ → MoufangLoop b ℓ₂ → MoufangLoop (a ⊔ b) (ℓ₁ ⊔ ℓ₂)
1637
1637
```
1638
1638
1639
- * Added new functions and proofs to ` Algebra.Construct.Flip.Op ` :
1640
- ``` agda
1641
- zero : Zero ≈ ε ∙ → Zero ≈ ε (flip ∙)
1642
- distributes : (≈ DistributesOver ∙) + → (≈ DistributesOver (flip ∙)) +
1643
- isSemiringWithoutAnnihilatingZero : IsSemiringWithoutAnnihilatingZero + * 0# 1# →
1644
- IsSemiringWithoutAnnihilatingZero + (flip *) 0# 1#
1645
- isSemiring : IsSemiring + * 0# 1# → IsSemiring + (flip *) 0# 1#
1646
- isCommutativeSemiring : IsCommutativeSemiring + * 0# 1# →
1647
- IsCommutativeSemiring + (flip *) 0# 1#
1648
- isCancellativeCommutativeSemiring : IsCancellativeCommutativeSemiring + * 0# 1# →
1649
- IsCancellativeCommutativeSemiring + (flip *) 0# 1#
1650
- isIdempotentSemiring : IsIdempotentSemiring + * 0# 1# →
1651
- IsIdempotentSemiring + (flip *) 0# 1#
1652
- isQuasiring : IsQuasiring + * 0# 1# → IsQuasiring + (flip *) 0# 1#
1653
- isRingWithoutOne : IsRingWithoutOne + * - 0# → IsRingWithoutOne + (flip *) - 0#
1654
- isNonAssociativeRing : IsNonAssociativeRing + * - 0# 1# →
1655
- IsNonAssociativeRing + (flip *) - 0# 1#
1656
- isRing : IsRing ≈ + * - 0# 1# → IsRing ≈ + (flip *) - 0# 1#
1657
- isNearring : IsNearring + * 0# 1# - → IsNearring + (flip *) 0# 1# -
1658
- isCommutativeRing : IsCommutativeRing + * - 0# 1# →
1659
- IsCommutativeRing + (flip *) - 0# 1#
1660
- semiringWithoutAnnihilatingZero : SemiringWithoutAnnihilatingZero a ℓ →
1661
- SemiringWithoutAnnihilatingZero a ℓ
1662
- commutativeSemiring : CommutativeSemiring a ℓ → CommutativeSemiring a ℓ
1663
- cancellativeCommutativeSemiring : CancellativeCommutativeSemiring a ℓ →
1664
- CancellativeCommutativeSemiring a ℓ
1665
- idempotentSemiring : IdempotentSemiring a ℓ → IdempotentSemiring a ℓ
1666
- quasiring : Quasiring a ℓ → Quasiring a ℓ
1667
- ringWithoutOne : RingWithoutOne a ℓ → RingWithoutOne a ℓ
1668
- nonAssociativeRing : NonAssociativeRing a ℓ → NonAssociativeRing a ℓ
1669
- nearring : Nearring a ℓ → Nearring a ℓ
1670
- ring : Ring a ℓ → Ring a ℓ
1671
- commutativeRing : CommutativeRing a ℓ → CommutativeRing a ℓ
1672
- ```
1673
-
1674
1639
* Added new definition to ` Algebra.Definitions ` :
1675
1640
``` agda
1676
1641
LeftDividesˡ : Op₂ A → Op₂ A → Set _
0 commit comments