-
Notifications
You must be signed in to change notification settings - Fork 24
/
Copy pathDPSH_CIFAR_10.py
268 lines (227 loc) · 9.45 KB
/
DPSH_CIFAR_10.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
from torchvision import transforms
import torch
import torch.optim as optim
from torch.autograd import Variable
from torch.utils.data import DataLoader
from torchvision import models
import os
import numpy as np
import pickle
from datetime import datetime
import utils.DataProcessing as DP
import utils.CalcHammingRanking as CalcHR
import CNN_model
def LoadLabel(filename, DATA_DIR):
path = os.path.join(DATA_DIR, filename)
fp = open(path, 'r')
labels = [x.strip() for x in fp]
fp.close()
return torch.LongTensor(list(map(int, labels)))
def EncodingOnehot(target, nclasses):
target_onehot = torch.FloatTensor(target.size(0), nclasses)
target_onehot.zero_()
target_onehot.scatter_(1, target.view(-1, 1), 1)
return target_onehot
def CalcSim(batch_label, train_label):
S = (batch_label.mm(train_label.t()) > 0).type(torch.FloatTensor)
return S
def CreateModel(model_name, bit, use_gpu):
if model_name == 'vgg11':
vgg11 = models.vgg11(pretrained=True)
cnn_model = CNN_model.cnn_model(vgg11, model_name, bit)
if model_name == 'alexnet':
alexnet = models.alexnet(pretrained=True)
cnn_model = CNN_model.cnn_model(alexnet, model_name, bit)
if use_gpu:
cnn_model = cnn_model.cuda()
return cnn_model
def AdjustLearningRate(optimizer, epoch, learning_rate):
lr = learning_rate * (0.1 ** (epoch // 50))
for param_group in optimizer.param_groups:
param_group['lr'] = lr
return optimizer
def GenerateCode(model, data_loader, num_data, bit, use_gpu):
B = np.zeros([num_data, bit], dtype=np.float32)
for iter, data in enumerate(data_loader, 0):
data_input, _, data_ind = data
if use_gpu:
data_input = Variable(data_input.cuda())
else: data_input = Variable(data_input)
output = model(data_input)
if use_gpu:
B[data_ind.numpy(), :] = torch.sign(output.cpu().data).numpy()
else:
B[data_ind.numpy(), :] = torch.sign(output.data).numpy()
return B
def Logtrick(x, use_gpu):
if use_gpu:
lt = torch.log(1+torch.exp(-torch.abs(x))) + torch.max(x, Variable(torch.FloatTensor([0.]).cuda()))
else:
lt = torch.log(1+torch.exp(-torch.abs(x))) + torch.max(x, Variable(torch.FloatTensor([0.])))
return lt
def Totloss(U, B, Sim, lamda, num_train):
theta = U.mm(U.t()) / 2
t1 = (theta*theta).sum() / (num_train * num_train)
l1 = (- theta * Sim + Logtrick(Variable(theta), False).data).sum()
l2 = (U - B).pow(2).sum()
l = l1 + lamda * l2
return l, l1, l2, t1
def DPSH_algo(bit, param, gpu_ind=0):
# parameters setting
os.environ['CUDA_VISIBLE_DEVICES'] = str(gpu_ind)
DATA_DIR = 'data/CIFAR-10'
DATABASE_FILE = 'database_img.txt'
TRAIN_FILE = 'train_img.txt'
TEST_FILE = 'test_img.txt'
DATABASE_LABEL = 'database_label.txt'
TRAIN_LABEL = 'train_label.txt'
TEST_LABEL = 'test_label.txt'
batch_size = 128
epochs = 150
learning_rate = 0.05
weight_decay = 10 ** -5
model_name = 'alexnet'
nclasses = 10
use_gpu = torch.cuda.is_available()
filename = param['filename']
lamda = param['lambda']
param['bit'] = bit
param['epochs'] = epochs
param['learning rate'] = learning_rate
param['model'] = model_name
### data processing
transformations = transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
dset_database = DP.DatasetProcessingCIFAR_10(
DATA_DIR, DATABASE_FILE, DATABASE_LABEL, transformations)
dset_train = DP.DatasetProcessingCIFAR_10(
DATA_DIR, TRAIN_FILE, TRAIN_LABEL, transformations)
dset_test = DP.DatasetProcessingCIFAR_10(
DATA_DIR, TEST_FILE, TEST_LABEL, transformations)
num_database, num_train, num_test = len(dset_database), len(dset_train), len(dset_test)
database_loader = DataLoader(dset_database,
batch_size=batch_size,
shuffle=False,
num_workers=4
)
train_loader = DataLoader(dset_train,
batch_size=batch_size,
shuffle=True,
num_workers=4
)
test_loader = DataLoader(dset_test,
batch_size=batch_size,
shuffle=False,
num_workers=4
)
### create model
model = CreateModel(model_name, bit, use_gpu)
optimizer = optim.SGD(
model.parameters(),
lr=learning_rate,
weight_decay=weight_decay)
### training phase
# parameters setting
B = torch.zeros(num_train, bit)
U = torch.zeros(num_train, bit)
train_labels = LoadLabel(TRAIN_LABEL, DATA_DIR)
train_labels_onehot = EncodingOnehot(train_labels, nclasses)
test_labels = LoadLabel(TEST_LABEL, DATA_DIR)
test_labels_onehot = EncodingOnehot(test_labels, nclasses)
train_loss = []
map_record = []
totloss_record = []
totl1_record = []
totl2_record = []
t1_record = []
Sim = CalcSim(train_labels_onehot, train_labels_onehot)
for epoch in range(epochs):
epoch_loss = 0.0
## training epoch
for iter, traindata in enumerate(train_loader, 0):
train_input, train_label, batch_ind = traindata
train_label = torch.squeeze(train_label)
if use_gpu:
train_label_onehot = EncodingOnehot(train_label, nclasses)
train_input, train_label = Variable(train_input.cuda()), Variable(train_label.cuda())
S = CalcSim(train_label_onehot, train_labels_onehot)
else:
train_label_onehot = EncodingOnehot(train_label, nclasses)
train_input, train_label = Variable(train_input), Variable(train_label)
S = CalcSim(train_label_onehot, train_labels_onehot)
model.zero_grad()
train_outputs = model(train_input)
for i, ind in enumerate(batch_ind):
U[ind, :] = train_outputs.data[i]
B[ind, :] = torch.sign(train_outputs.data[i])
Bbatch = torch.sign(train_outputs)
if use_gpu:
theta_x = train_outputs.mm(Variable(U.cuda()).t()) / 2
logloss = (Variable(S.cuda())*theta_x - Logtrick(theta_x, use_gpu)).sum() \
/ (num_train * len(train_label))
regterm = (Bbatch-train_outputs).pow(2).sum() / (num_train * len(train_label))
else:
theta_x = train_outputs.mm(Variable(U).t()) / 2
logloss = (Variable(S)*theta_x - Logtrick(theta_x, use_gpu)).sum() \
/ (num_train * len(train_label))
regterm = (Bbatch-train_outputs).pow(2).sum() / (num_train * len(train_label))
loss = - logloss + lamda * regterm
loss.backward()
optimizer.step()
epoch_loss += loss.data[0]
# print('[Training Phase][Epoch: %3d/%3d][Iteration: %3d/%3d] Loss: %3.5f' % \
# (epoch + 1, epochs, iter + 1, np.ceil(num_train / batch_size),loss.data[0]))
print('[Train Phase][Epoch: %3d/%3d][Loss: %3.5f]' % (epoch+1, epochs, epoch_loss / len(train_loader)), end='')
optimizer = AdjustLearningRate(optimizer, epoch, learning_rate)
l, l1, l2, t1 = Totloss(U, B, Sim, lamda, num_train)
totloss_record.append(l)
totl1_record.append(l1)
totl2_record.append(l2)
t1_record.append(t1)
print('[Total Loss: %10.5f][total L1: %10.5f][total L2: %10.5f][norm theta: %3.5f]' % (l, l1, l2, t1), end='')
### testing during epoch
qB = GenerateCode(model, test_loader, num_test, bit, use_gpu)
tB = torch.sign(B).numpy()
map_ = CalcHR.CalcMap(qB, tB, test_labels_onehot.numpy(), train_labels_onehot.numpy())
train_loss.append(epoch_loss / len(train_loader))
map_record.append(map_)
print('[Test Phase ][Epoch: %3d/%3d] MAP(retrieval train): %3.5f' % (epoch+1, epochs, map_))
print(len(train_loader))
### evaluation phase
## create binary code
model.eval()
database_labels = LoadLabel(DATABASE_LABEL, DATA_DIR)
database_labels_onehot = EncodingOnehot(database_labels, nclasses)
qB = GenerateCode(model, test_loader, num_test, bit, use_gpu)
dB = GenerateCode(model, database_loader, num_database, bit, use_gpu)
map = CalcHR.CalcMap(qB, dB, test_labels_onehot.numpy(), database_labels_onehot.numpy())
print('[Retrieval Phase] MAP(retrieval database): %3.5f' % map)
result = {}
result['qB'] = qB
result['dB'] = dB
result['train loss'] = train_loss
result['map record'] = map_record
result['map'] = map
result['param'] = param
result['total loss'] = totloss_record
result['l1 loss'] = totl1_record
result['l2 loss'] = totl2_record
result['norm theta'] = t1_record
result['filename'] = filename
return result
if __name__=='__main__':
bit = 12
lamda = 50
gpu_ind = 0
filename = 'log/DPSH_' + str(bit) + 'bits_NUS-WIDE_' + datetime.now().strftime("%y-%m-%d-%H-%M-%S") + '.pkl'
param = {}
param['lambda'] = lamda
param['filename'] = filename
result = DPSH_algo(bit, param, gpu_ind)
fp = open(result['filename'], 'wb')
pickle.dump(result, fp)
fp.close()