-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsimulation.py
188 lines (129 loc) · 4.3 KB
/
simulation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
import math
import matplotlib.pyplot as plt
import numpy as np
def sign(x):
return 1 if x >= 0.0 else -1
class Motor:
def __init__(self):
self.last_time = 0
self.rpm = 0
self.max_rpm = 200
self.holding_force = 0.05
self.anchor_mass = 0.01
def step(self, time, voltage):
dt = time - self.last_time
driving_force = voltage
remaining_force = max(0, abs(driving_force) - self.holding_force) * sign(driving_force) - self.rpm * 0.02
acceleration = remaining_force / self.anchor_mass
self.rpm += acceleration * dt
self.last_time = time
class Winch:
def __init__(self):
self.position = 0
self.radius = 0.01 # 1 cm
self.last_time = 0
def step(self, time, rpm):
dt = time - self.last_time
dt_min = dt / 60.0
self.position += dt_min * rpm * self.radius * 2 * math.pi
self.last_time = time
class PIDController:
def __init__(self, kp, ki, kd, max_abs):
self.kp = kp
self.ki = ki
self.kd = kd
self.limit_pos = max_abs
self.limit_neg = -max_abs
self.last_time = 0
self.last_error = 0.0
self.integrated_error = 0.0
def step(self, time, error):
proportinal = self.kp * error
dt = time - self.last_time
if dt > 0:
self.integrated_error += error * dt
integral = self.ki * self.integrated_error
d = (error - self.last_error) / dt
derivative = self.kd * d
else:
integral = 0.0
derivative = 0.0
self.last_time = time
self.last_error = error
result = proportinal + integral + derivative
return max(self.limit_neg, min(self.limit_pos, result))
class Driver:
def __init__(self):
self.voltage = 0
self.on_counter = 0
self.off_counter = 0
self.pwm_steps = 10
self.slope_length = 20.0
self.pid = PIDController(0.5, 0.0, 0.1, 1.0)
def step(self, time, position, target_position):
# check whether a PWM cycle is finished
if self.on_counter <= 0 and self.off_counter <= 0:
# compute new controller output
pos_delta_mm = (target_position - position) * 1000.0
y = self.pid.step(time, pos_delta_mm)
power_pwm = int(y * self.pwm_steps)
self.on_counter = abs(power_pwm)
self.off_counter = self.pwm_steps - self.on_counter
if self.on_counter > 0:
self.voltage = sign(power_pwm) * 10
else:
self.voltage = 0
else:
# PWM still running
if self.on_counter > 0:
# keep voltage high
self.on_counter -= 1
else:
self.voltage = 0
self.off_counter -= 1
def get_target_position(t):
target_mm = 0
if t < 1.0:
pass
elif t < 4.0:
target_mm = 100
elif t < 7.0:
target_mm = 120
else:
target_mm = 50
return target_mm / 1000.0 # convert to m
x_values = list()
motor_rpm_values = list()
position_values = list()
voltage_values = list()
target_values = list()
motor = Motor()
winch = Winch()
driver = Driver()
t_per_step = 0.0001
max_steps = 100000
for step in range(max_steps):
t = step * t_per_step
x_values.append(t)
target_position = get_target_position(t)
target_values.append(target_position * 1000) # in mm
driver.step(t, winch.position, target_position)
voltage_values.append(driver.voltage)
motor.step(t, driver.voltage)
motor_rpm_values.append(motor.rpm)
winch.step(t, motor.rpm)
position_values.append(winch.position * 1000) # in mm
# plot the data
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
ax.plot(x_values, motor_rpm_values, color='tab:blue', label="Motor spped [RPM]")
ax.plot(x_values, position_values, color='tab:orange', label="Winch position [mm]")
ax.plot(x_values, target_values, color='tab:red', label="Target position [mm]")
ax.plot(x_values, voltage_values, color='tab:green', label="Voltage [V]")
# set the limits
#ax.set_xlim([0, 1])
#ax.set_ylim([0, 1])
#ax.set_title('line plot with data points')
plt.legend(loc='lower right')
# display the plot
plt.show()