-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathday19.py
236 lines (187 loc) · 7.27 KB
/
day19.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
from dataclasses import dataclass
from functools import reduce
from pathlib import Path
import re
import pytest
from z3 import *
from operator import mul
@dataclass(frozen=True)
class Blueprint:
id: int
oreRobotCostsNOre: int
clayRobotCostsNOre: int
obsidianRobotCostsNOre: int
obsidianRobotCostsMClay: int
geodeRobotCostsNOre: int
geodeRobotCostsMObsidian: int
def parse(line: str) -> "Blueprint":
a, b, c, d, e, f, g = map(
int,
re.search(
r"^Blueprint (\d+): Each ore robot costs (\d+) ore. Each clay robot costs (\d+) ore. Each obsidian robot costs (\d+) ore and (\d+) clay. Each geode robot costs (\d+) ore and (\d+) obsidian.$",
line,
).groups(),
)
return Blueprint(a, b, c, d, e, f, g)
def geodes_can_open(blueprint: Blueprint, t: int) -> int:
o = Optimize()
def create_int_vector(prefix: str):
return [Int(f"{prefix}_{i}") for i in range(t + 1)]
# Resources on turn `i`
ore = create_int_vector("ore")
clay = create_int_vector("clay")
obsidian = create_int_vector("obsidian")
geodes = create_int_vector("geodes")
# Amount of robots on turn `i`
ore_robots = create_int_vector("ore_robots")
clay_robots = create_int_vector("clay_robots")
obsidian_robots = create_int_vector("obsidian_robots")
geodes_robots = create_int_vector("geodes_robots")
# Are we buying such a robot on turn `i`?
buy_ore_robot = create_int_vector("buy_ore_robot")
buy_clay_robot = create_int_vector("buy_clay_robot")
buy_obsidian_robot = create_int_vector("buy_obsidian_robot")
buy_geodes_robot = create_int_vector("buy_geodes_robot")
# Starting robots
o.add(ore_robots[0] == 1)
o.add(clay_robots[0] == 0)
o.add(obsidian_robots[0] == 0)
o.add(geodes_robots[0] == 0)
# Starting minerals
o.add(ore[0] == 0)
o.add(clay[0] == 0)
o.add(obsidian[0] == 0)
o.add(geodes[0] == 0)
o.add(buy_ore_robot[0] == 0)
o.add(buy_clay_robot[0] == 0)
o.add(buy_obsidian_robot[0] == 0)
o.add(buy_geodes_robot[0] == 0)
# New robots are a function of previous robots and robots bought
for i in range(1, t + 1):
o.add(ore_robots[i] == ore_robots[i - 1] + buy_ore_robot[i - 1])
o.add(clay_robots[i] == clay_robots[i - 1] + buy_clay_robot[i - 1])
o.add(obsidian_robots[i] == obsidian_robots[i - 1] + buy_obsidian_robot[i - 1])
o.add(geodes_robots[i] == geodes_robots[i - 1] + buy_geodes_robot[i - 1])
# Can only buy robots if enough minerals
for i in range(1, t + 1):
o.add(ore[i] >= 0)
o.add(clay[i] >= 0)
o.add(obsidian[i] >= 0)
o.add(geodes[i] >= 0)
for i in range(1, t + 1):
o.add(ore_robots[i] >= 1)
o.add(clay_robots[i] >= 0)
o.add(obsidian_robots[i] >= 0)
o.add(geodes_robots[i] >= 0)
# Can buy 0 or 1 robots per turn
for i in range(1, t + 1):
o.add(buy_ore_robot[i] >= 0)
o.add(buy_ore_robot[i] <= 1)
o.add(buy_clay_robot[i] >= 0)
o.add(buy_clay_robot[i] <= 1)
o.add(buy_obsidian_robot[i] >= 0)
o.add(buy_obsidian_robot[i] <= 1)
o.add(buy_geodes_robot[i] >= 0)
o.add(buy_geodes_robot[i] <= 1)
o.add(Sum(buy_ore_robot[i], buy_clay_robot[i], buy_obsidian_robot[i], buy_geodes_robot[i]) <= 1)
o.add(Sum(buy_ore_robot[i], buy_clay_robot[i], buy_obsidian_robot[i], buy_geodes_robot[i]) >= 0)
# New minerals are function of previous amount, previous robots, cost of robots bought
for i in range(1, t + 1):
o.add(
ore[i] == ore[i - 1]
+ ore_robots[i - 1]
- buy_ore_robot[i] * blueprint.oreRobotCostsNOre
- buy_clay_robot[i] * blueprint.clayRobotCostsNOre
- buy_obsidian_robot[i] * blueprint.obsidianRobotCostsNOre
- buy_geodes_robot[i] * blueprint.geodeRobotCostsNOre
)
o.add(
clay[i] == clay[i - 1]
+ clay_robots[i - 1]
- buy_obsidian_robot[i] * blueprint.obsidianRobotCostsMClay
)
o.add(
obsidian[i] == obsidian[i - 1]
+ obsidian_robots[i - 1]
- buy_geodes_robot[i] * blueprint.geodeRobotCostsMObsidian
)
o.add(geodes[i] == geodes[i - 1] + geodes_robots[i - 1])
objective = geodes[t]
o.maximize(objective)
if o.check() != sat:
print(o)
model = o.model()
debug = False
if debug:
for i in range(t + 1):
print(f"Minute {i}:")
print(f"Ore robots {model[ore_robots[i]].as_long()}")
print(f"Clay robots {model[clay_robots[i]].as_long()}")
print(f"Obsidian robots {model[obsidian_robots[i]].as_long()}")
print(f"Geode robots {model[geodes_robots[i]].as_long()}")
print()
print(f"Buy ore robots {model[buy_ore_robot[i]].as_long()}")
print(f"Buy clay robots {model[buy_clay_robot[i]].as_long()}")
print(f"Buy obsidian robots {model[buy_obsidian_robot[i]].as_long()}")
print(f"Buy geode robots {model[buy_geodes_robot[i]].as_long()}")
print()
print(f"Ore {model[ore[i]].as_long()}")
print(f"Clay {model[clay[i]].as_long()}")
print(f"Obsidian {model[obsidian[i]].as_long()}")
print(f"Geodes {model[geodes[i]].as_long()}")
print()
print()
result = model[objective].as_long()
print(result)
return result
def parse(file_name: str) -> list[Blueprint]:
SCRIPT_DIR = Path(__file__).parent
TEST_FILE = Path(SCRIPT_DIR, file_name)
with open(TEST_FILE, "r", encoding="UTF-8") as file:
lines = file.read().splitlines()
return [Blueprint.parse(s) for s in lines]
def part1(blueprints: list[Blueprint]) -> int:
return sum(
[
blueprint.id * geodes_can_open(blueprint, PART_1_MINUTES)
for blueprint in blueprints
]
)
def part2(blueprints: list[Blueprint]) -> int:
results = [geodes_can_open(blueprint, PART_2_MINUTES) for blueprint in blueprints[:3]]
result = reduce(mul, results, 1)
return result
PART_1_MINUTES = 24
PART_2_MINUTES = 32
@pytest.fixture
def test_data():
return parse("day19-test.txt")
@pytest.fixture
def real_data():
return parse("day19.txt")
def test_test_1_1(test_data):
assert geodes_can_open(test_data[0], PART_1_MINUTES) == 9
def test_test_1_2(test_data):
assert geodes_can_open(test_data[1], PART_1_MINUTES) == 12
def test_test_1(test_data):
assert part1(test_data) == 33
def test_test_2_1(test_data):
assert geodes_can_open(test_data[0], PART_2_MINUTES) == 56
def test_test_2_2(test_data):
assert geodes_can_open(test_data[1], PART_2_MINUTES) == 62
def test_real_1(real_data):
assert part1(real_data) == 1624
def test_real_2(real_data):
assert part2(real_data) == 12628
# Not sure that this actually works, it doesn't seem to terminate.
if __name__ == "__main__":
data = parse("day19.txt")
test_data = parse("day19-test.txt")
test_1_result = part1(test_data)
print(test_1_result)
test_2_result = part2(test_data)
print(test_2_result)
real_1_result = part1(data)
print(real_1_result)
real_2 = part2(data)
print(real_2)