It's no use; your navigation system simply isn't capable of providing walking directions in the arctic circle, and certainly not in 1018.
The Elves suggest an alternative. In times like these, North Pole rescue operations will arrange points of light in the sky to guide missing Elves back to base. Unfortunately, the message is easy to miss: the points move slowly enough that it takes hours to align them, but have so much momentum that they only stay aligned for a second. If you blink at the wrong time, it might be hours before another message appears.
You can see these points of light floating in the distance, and record their position in the sky and their velocity, the relative change in position per second (your puzzle input). The coordinates are all given from your perspective; given enough time, those positions and velocities will move the points into a cohesive message!
Rather than wait, you decide to fast-forward the process and calculate what the points will eventually spell.
For example, suppose you note the following points:
position=< 9, 1> velocity=< 0, 2>
position=< 7, 0> velocity=<-1, 0>
position=< 3, -2> velocity=<-1, 1>
position=< 6, 10> velocity=<-2, -1>
position=< 2, -4> velocity=< 2, 2>
position=<-6, 10> velocity=< 2, -2>
position=< 1, 8> velocity=< 1, -1>
position=< 1, 7> velocity=< 1, 0>
position=<-3, 11> velocity=< 1, -2>
position=< 7, 6> velocity=<-1, -1>
position=<-2, 3> velocity=< 1, 0>
position=<-4, 3> velocity=< 2, 0>
position=<10, -3> velocity=<-1, 1>
position=< 5, 11> velocity=< 1, -2>
position=< 4, 7> velocity=< 0, -1>
position=< 8, -2> velocity=< 0, 1>
position=<15, 0> velocity=<-2, 0>
position=< 1, 6> velocity=< 1, 0>
position=< 8, 9> velocity=< 0, -1>
position=< 3, 3> velocity=<-1, 1>
position=< 0, 5> velocity=< 0, -1>
position=<-2, 2> velocity=< 2, 0>
position=< 5, -2> velocity=< 1, 2>
position=< 1, 4> velocity=< 2, 1>
position=<-2, 7> velocity=< 2, -2>
position=< 3, 6> velocity=<-1, -1>
position=< 5, 0> velocity=< 1, 0>
position=<-6, 0> velocity=< 2, 0>
position=< 5, 9> velocity=< 1, -2>
position=<14, 7> velocity=<-2, 0>
position=<-3, 6> velocity=< 2, -1>
Each line represents one point. Positions are given as <X, Y>
pairs: X represents how far left (negative) or right (positive) the point appears, while Y represents how far up (negative) or down (positive) the point appears.
At 0
seconds, each point has the position given. Each second, each point's velocity is added to its position. So, a point with velocity <1, -2>
is moving to the right, but is moving upward twice as quickly. If this point's initial position were <3, 9>
, after 3
seconds, its position would become <6, 3>
.
Over time, the points listed above would move like this:
Initially:
........#.............
................#.....
.........#.#..#.......
......................
#..........#.#.......#
...............#......
....#.................
..#.#....#............
.......#..............
......#...............
...#...#.#...#........
....#..#..#.........#.
.......#..............
...........#..#.......
#...........#.........
...#.......#..........
After 1 second:
......................
......................
..........#....#......
........#.....#.......
..#.........#......#..
......................
......#...............
....##.........#......
......#.#.............
.....##.##..#.........
........#.#...........
........#...#.....#...
..#...........#.......
....#.....#.#.........
......................
......................
After 2 seconds:
......................
......................
......................
..............#.......
....#..#...####..#....
......................
........#....#........
......#.#.............
.......#...#..........
.......#..#..#.#......
....#....#.#..........
.....#...#...##.#.....
........#.............
......................
......................
......................
After 3 seconds:
......................
......................
......................
......................
......#...#..###......
......#...#...#.......
......#...#...#.......
......#####...#.......
......#...#...#.......
......#...#...#.......
......#...#...#.......
......#...#..###......
......................
......................
......................
......................
After 4 seconds:
......................
......................
......................
............#.........
........##...#.#......
......#.....#..#......
.....#..##.##.#.......
.......##.#....#......
...........#....#.....
..............#.......
....#......#...#......
.....#.....##.........
...............#......
...............#......
......................
......................
After 3 seconds, the message appeared briefly: HI
. Of course, your message will be much longer and will take many more seconds to appear.
What message will eventually appear in the sky?
Your puzzle answer was RBCZAEPP
.
Good thing you didn't have to wait, because that would have taken a long time - much longer than the 3
seconds in the example above.
Impressed by your sub-hour communication capabilities, the Elves are curious: exactly how many seconds would they have needed to wait for that message to appear?
Your puzzle answer was 10076
.
A quick glance at the inputs shows coordinates in the positive or negative 10000s and velocities in single-digit numbers with the same starting digit, but opposite sign, so it's fair to assume that the stars "converge" somewhere around the 10000 step mark. To find the exact point in time, I used a simple heuristic: assuming that the message is as compact as possible and every step before and after it has stars flying around outside of the message's display area, I simply had the code search for the time step where the bounding box of all stars has the minimal area. This works just fine and finds the exact solution in no time. The resulting bounding box (62x10) is small enough to allow for a simple ASCII-dot rendition of the final constellation on the console.
This puzzle is a little unusual in that the solution for part 2 is actually an interim result of part 1, so there's not even a separate implementation required for it.
- Parts 1+2, Python: 365 bytes, <100 ms