-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathmain.py
186 lines (147 loc) · 6.9 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
from __future__ import print_function
import time
import gc
import os
import argparse
import numpy as np
from sklearn.externals import joblib
import torch
from torch import nn
import torch.backends.cudnn as cudnn
from vocab import VocabBuilder, GloveVocabBuilder
from dataloader import TextClassDataLoader
from model import RNN
from util import AverageMeter, accuracy
from util import adjust_learning_rate
np.random.seed(0)
torch.manual_seed(0)
parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--epochs', default=50, type=int, metavar='N', help='number of total epochs to run')
parser.add_argument('-b', '--batch-size', default=128, type=int, metavar='N', help='mini-batch size')
parser.add_argument('--lr', '--learning-rate', default=0.005, type=float, metavar='LR', help='initial learning rate')
parser.add_argument('--weight-decay', '--wd', default=1e-4, type=float, metavar='W', help='weight decay')
parser.add_argument('--print-freq', '-p', default=10, type=int, metavar='N', help='print frequency')
parser.add_argument('--save-freq', '-sf', default=10, type=int, metavar='N', help='model save frequency(epoch)')
parser.add_argument('--embedding-size', default=50, type=int, metavar='N', help='embedding size')
parser.add_argument('--hidden-size', default=128, type=int, metavar='N', help='rnn hidden size')
parser.add_argument('--layers', default=2, type=int, metavar='N', help='number of rnn layers')
parser.add_argument('--classes', default=8, type=int, metavar='N', help='number of output classes')
parser.add_argument('--min-samples', default=5, type=int, metavar='N', help='min number of tokens')
parser.add_argument('--cuda', default=False, action='store_true', help='use cuda')
parser.add_argument('--glove', default='glove/glove.6B.100d.txt', help='path to glove txt')
parser.add_argument('--rnn', default='LSTM', choices=['LSTM', 'GRU'], help='rnn module type')
parser.add_argument('--mean_seq', default=False, action='store_true', help='use mean of rnn output')
parser.add_argument('--clip', type=float, default=0.25, help='gradient clipping')
args = parser.parse_args()
# create vocab
print("===> creating vocabs ...")
end = time.time()
v_builder, d_word_index, embed = None, None, None
if os.path.exists(args.glove):
v_builder = GloveVocabBuilder(path_glove=args.glove)
d_word_index, embed = v_builder.get_word_index()
args.embedding_size = embed.size(1)
else:
v_builder = VocabBuilder(path_file='data/train.tsv')
d_word_index, embed = v_builder.get_word_index(min_sample=args.min_samples)
if not os.path.exists('gen'):
os.mkdir('gen')
joblib.dump(d_word_index, 'gen/d_word_index.pkl', compress=3)
print('===> vocab creatin: {t:.3f}'.format(t=time.time()-end))
print('args: ',args)
# create trainer
print("===> creating dataloaders ...")
end = time.time()
train_loader = TextClassDataLoader('data/train.tsv', d_word_index, batch_size=args.batch_size)
val_loader = TextClassDataLoader('data/test.tsv', d_word_index, batch_size=args.batch_size)
print('===> dataloader creatin: {t:.3f}'.format(t=time.time()-end))
# create model
print("===> creating rnn model ...")
vocab_size = len(d_word_index)
model = RNN(vocab_size=vocab_size, embed_size=args.embedding_size, num_output=args.classes, rnn_model=args.rnn,
use_last=( not args.mean_seq),
hidden_size=args.hidden_size, embedding_tensor=embed, num_layers=args.layers, batch_first=True)
print(model)
# optimizer and loss
optimizer = torch.optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=args.lr, weight_decay=args.weight_decay)
criterion = nn.CrossEntropyLoss()
print(optimizer)
print(criterion)
if args.cuda:
torch.backends.cudnn.enabled = True
cudnn.benchmark = True
model.cuda()
criterion = criterion.cuda()
def train(train_loader, model, criterion, optimizer, epoch):
batch_time = AverageMeter()
data_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to train mode
model.train()
end = time.time()
for i, (input, target, seq_lengths) in enumerate(train_loader):
# measure data loading time
data_time.update(time.time() - end)
if args.cuda:
input = input.cuda(async=True)
target = target.cuda(async=True)
# compute output
output = model(input, seq_lengths)
loss = criterion(output, target)
# measure accuracy and record loss
prec1 = accuracy(output.data, target, topk=(1,))
losses.update(loss.data, input.size(0))
top1.update(prec1[0][0], input.size(0))
# compute gradient and do SGD step
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), args.clip)
optimizer.step()
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i != 0 and i % args.print_freq == 0:
print('Epoch: [{0}][{1}/{2}] Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Data {data_time.val:.3f} ({data_time.avg:.3f}) Loss {loss.val:.4f} ({loss.avg:.4f}) '
'Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
epoch, i, len(train_loader), batch_time=batch_time, data_time=data_time, loss=losses, top1=top1))
gc.collect()
def test(val_loader, model, criterion):
batch_time = AverageMeter()
losses = AverageMeter()
top1 = AverageMeter()
# switch to evaluate mode
model.eval()
end = time.time()
for i, (input, target,seq_lengths) in enumerate(val_loader):
if args.cuda:
input = input.cuda(async=True)
target = target.cuda(async=True)
# compute output
output = model(input,seq_lengths)
loss = criterion(output, target)
# measure accuracy and record loss
prec1 = accuracy(output.data, target, topk=(1,))
losses.update(loss.data, input.size(0))
top1.update(prec1[0][0], input.size(0))
# measure elapsed time
batch_time.update(time.time() - end)
end = time.time()
if i!= 0 and i % args.print_freq == 0:
print('Test: [{0}/{1}] Time {batch_time.val:.3f} ({batch_time.avg:.3f}) '
'Loss {loss.val:.4f} ({loss.avg:.4f}) Prec@1 {top1.val:.3f} ({top1.avg:.3f})'.format(
i, len(val_loader), batch_time=batch_time, loss=losses, top1=top1))
gc.collect()
print(' * Prec@1 {top1.avg:.3f}'.format(top1=top1))
return top1.avg
# training and testing
for epoch in range(1, args.epochs+1):
adjust_learning_rate(args.lr, optimizer, epoch)
train(train_loader, model, criterion, optimizer, epoch)
test(val_loader, model, criterion)
# save current model
if epoch % args.save_freq == 0:
name_model = 'rnn_{}.pkl'.format(epoch)
path_save_model = os.path.join('gen', name_model)
joblib.dump(model.float(), path_save_model, compress=2)