-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathfbr.c
373 lines (327 loc) · 12.4 KB
/
fbr.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
/*
Calf Box, an open source musical instrument.
Copyright (C) 2010-2011 Krzysztof Foltman
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include "biquad-float.h"
#include "config.h"
#include "config-api.h"
#include "dspmath.h"
#include "eq.h"
#include "module.h"
#include "rt.h"
#include <complex.h>
#include <glib.h>
#include <malloc.h>
#include <math.h>
#include <memory.h>
#include <sndfile.h>
#include <stdio.h>
#include <stdlib.h>
#define MODULE_PARAMS feedback_reducer_params
#define MAX_FBR_BANDS 16
#define ANALYSIS_BUFFER_SIZE 8192
#define ANALYSIS_BUFFER_BITS 13
// Sine table
static complex float euler_table[ANALYSIS_BUFFER_SIZE];
// Bit reversal table
static int map_table[ANALYSIS_BUFFER_SIZE];
// Bit-reversed von Hann window
static float von_hann_window_transposed[ANALYSIS_BUFFER_SIZE];
struct feedback_reducer_params
{
struct eq_band bands[MAX_FBR_BANDS];
};
struct feedback_reducer_module
{
struct cbox_module module;
struct feedback_reducer_params *params, *old_params;
struct cbox_biquadf_coeffs coeffs[MAX_FBR_BANDS];
struct cbox_biquadf_state state[MAX_FBR_BANDS][2];
float analysis_buffer[ANALYSIS_BUFFER_SIZE];
float *wrptr;
int analysed;
complex float fft_buffers[2][ANALYSIS_BUFFER_SIZE];
};
// Trivial implementation of Cooley-Tukey (+ my own mistakes) + von Hann window
static int do_fft(struct feedback_reducer_module *m)
{
// Copy + bit reversal addressing
for (int i = 0; i < ANALYSIS_BUFFER_SIZE; i++)
{
m->fft_buffers[0][i] = von_hann_window_transposed[i] * m->analysis_buffer[map_table[i]] * (2.0 / ANALYSIS_BUFFER_SIZE);
}
for (int i = 0; i < ANALYSIS_BUFFER_BITS; i++)
{
complex float *src = m->fft_buffers[i & 1];
complex float *dst = m->fft_buffers[(~i) & 1];
int invi = ANALYSIS_BUFFER_BITS - i - 1;
int disp = 1 << i;
int mask = disp - 1;
for (int j = 0; j < ANALYSIS_BUFFER_SIZE / 2; j++)
{
int jj1 = (j & mask) + ((j & ~mask) << 1); // insert 0 at i'th bit to get the left arm of the butterfly
int jj2 = jj1 + disp; // insert 1 at i'th bit to get the right arm
// e^iw
complex float eiw1 = euler_table[(jj1 << invi) & (ANALYSIS_BUFFER_SIZE - 1)];
complex float eiw2 = euler_table[(jj2 << invi) & (ANALYSIS_BUFFER_SIZE - 1)];
// printf("%d -> %d, %d\n", j, jj, jj + disp);
butterfly(&dst[jj1], &dst[jj2], src[jj1], src[jj2], eiw1, eiw2);
}
}
return ANALYSIS_BUFFER_BITS & 1;
}
#define PEAK_REGION_RADIUS 3
struct potential_peak_info
{
int bin;
float avg;
float centre;
float peak;
float dist;
float points;
};
static int peak_compare(const void *peak1, const void *peak2)
{
const struct potential_peak_info *pi1 = peak1;
const struct potential_peak_info *pi2 = peak2;
if (pi1->points < pi2->points)
return +1;
if (pi1->points > pi2->points)
return -1;
return 0;
}
static int find_peaks(complex float *spectrum, float srate, float peak_freqs[16])
{
struct potential_peak_info pki[ANALYSIS_BUFFER_SIZE / 2 + 1];
for (int i = 0; i <= ANALYSIS_BUFFER_SIZE / 2; i++)
{
pki[i].bin = i;
pki[i].points = 0.f;
}
float gmax = 0;
for (int i = PEAK_REGION_RADIUS; i <= ANALYSIS_BUFFER_SIZE / 2 - PEAK_REGION_RADIUS; i++)
{
struct potential_peak_info *pi = &pki[i];
float sum = 0;
float sumf = 0;
float peak = 0;
for (int j = -PEAK_REGION_RADIUS; j <= PEAK_REGION_RADIUS; j++)
{
float f = (i + j);
float bin = cabs(spectrum[i + j]);
if (bin > peak)
peak = bin;
sum += bin;
sumf += f * bin;
}
pi->avg = sum / (2 * PEAK_REGION_RADIUS + 1);
pi->peak = peak;
pi->centre = sumf / sum;
pi->dist = (sumf / sum - i);
if (peak > gmax)
gmax = peak;
// printf("Bin %d sumf/sum %f avg %f peak %f p/a %f dist %f val %f\n", i, sumf / sum, pki[i].avg, peak, peak / pki[i].avg, sumf/sum - i, cabs(spectrum[i]));
}
for (int i = PEAK_REGION_RADIUS; i <= ANALYSIS_BUFFER_SIZE / 2 - PEAK_REGION_RADIUS; i++)
{
struct potential_peak_info *tpi = &pki[i];
// ignore peaks below -40dB of the max bin
if (pki[(int)tpi->centre].peak < gmax * 0.01)
continue;
pki[(int)tpi->centre].points += 1;
}
#if 0
for (int i = 0; i <= ANALYSIS_BUFFER_SIZE / 2; i++)
{
float freq = i * srate / ANALYSIS_BUFFER_SIZE;
printf("Bin %d freq %f points %f\n", i, freq, pki[i].points);
}
#endif
qsort(pki, ANALYSIS_BUFFER_SIZE / 2 + 1, sizeof(struct potential_peak_info), peak_compare);
float peaks[16];
int peak_count = 0;
for (int i = 0; i <= ANALYSIS_BUFFER_SIZE / 2; i++)
{
if (pki[i].points <= 1)
break;
if (pki[i].peak <= 0.0001)
break;
gboolean dupe = FALSE;
for (int j = 0; j < peak_count; j++)
{
if (fabs(peaks[j] - pki[i].centre) < PEAK_REGION_RADIUS)
{
dupe = TRUE;
break;
}
}
if (dupe)
continue;
peak_freqs[peak_count] = pki[i].centre * srate / ANALYSIS_BUFFER_SIZE;
peaks[peak_count++] = pki[i].centre;
printf("Mul %f freq %f points %f peak %f\n", pki[i].centre, pki[i].centre * srate / ANALYSIS_BUFFER_SIZE, pki[i].points, pki[i].peak);
if (peak_count == 4)
break;
}
return peak_count;
}
static void redo_filters(struct feedback_reducer_module *m)
{
for (int i = 0; i < MAX_FBR_BANDS; i++)
{
struct eq_band *band = &m->params->bands[i];
if (band->active)
{
cbox_biquadf_set_peakeq_rbj(&m->coeffs[i], band->center, band->q, band->gain, m->module.srate);
}
}
m->old_params = m->params;
}
gboolean feedback_reducer_process_cmd(struct cbox_command_target *ct, struct cbox_command_target *fb, struct cbox_osc_command *cmd, GError **error)
{
struct feedback_reducer_module *m = (struct feedback_reducer_module *)ct->user_data;
EFFECT_PARAM_ARRAY("/active", "i", bands, active, int, , 0, 1) else
EFFECT_PARAM_ARRAY("/center", "f", bands, center, double, , 10, 20000) else
EFFECT_PARAM_ARRAY("/q", "f", bands, q, double, , 0.01, 100) else
EFFECT_PARAM_ARRAY("/gain", "f", bands, gain, double, dB2gain_simple, -100, 100) else
if (!strcmp(cmd->command, "/start") && !strcmp(cmd->arg_types, ""))
{
m->analysed = 0;
cbox_rt_swap_pointers(m->module.rt, (void **)&m->wrptr, m->analysis_buffer);
}
else if (!strcmp(cmd->command, "/status") && !strcmp(cmd->arg_types, ""))
{
if (!cbox_check_fb_channel(fb, cmd->command, error))
return FALSE;
if (m->wrptr == m->analysis_buffer + ANALYSIS_BUFFER_SIZE && m->analysed == 0)
{
float freqs[16];
int count = find_peaks(m->fft_buffers[do_fft(m)], m->module.srate, freqs);
struct feedback_reducer_params *p = malloc(sizeof(struct feedback_reducer_params));
memcpy(p->bands + count, &m->params->bands[0], sizeof(struct eq_band) * (MAX_FBR_BANDS - count));
for (int i = 0; i < count; i++)
{
p->bands[i].active = TRUE;
p->bands[i].center = freqs[i];
p->bands[i].q = freqs[i] / 50; // each band ~100 Hz (not really sure about filter Q vs bandwidth)
p->bands[i].gain = 0.125;
}
free(cbox_rt_swap_pointers(m->module.rt, (void **)&m->params, p)); \
m->analysed = 1;
if (!cbox_execute_on(fb, NULL, "/refresh", "i", error, 1))
return FALSE;
}
if (!cbox_execute_on(fb, NULL, "/finished", "i", error, m->analysed))
return FALSE;
for (int i = 0; i < MAX_FBR_BANDS; i++)
{
if (!cbox_execute_on(fb, NULL, "/active", "ii", error, i, (int)m->params->bands[i].active))
return FALSE;
if (!cbox_execute_on(fb, NULL, "/center", "if", error, i, m->params->bands[i].center))
return FALSE;
if (!cbox_execute_on(fb, NULL, "/q", "if", error, i, m->params->bands[i].q))
return FALSE;
if (!cbox_execute_on(fb, NULL, "/gain", "if", error, i, gain2dB_simple(m->params->bands[i].gain)))
return FALSE;
}
// return cbox_execute_on(fb, NULL, "/wet_dry", "f", error, m->params->wet_dry);
return CBOX_OBJECT_DEFAULT_STATUS(&m->module, fb, error);
}
else
return cbox_object_default_process_cmd(ct, fb, cmd, error);
return TRUE;
}
void feedback_reducer_process_event(struct cbox_module *module, const uint8_t *data, uint32_t len)
{
// struct feedback_reducer_module *m = module->user_data;
}
void feedback_reducer_process_block(struct cbox_module *module, cbox_sample_t **inputs, cbox_sample_t **outputs)
{
struct feedback_reducer_module *m = module->user_data;
if (m->params != m->old_params)
redo_filters(m);
if (m->wrptr && m->wrptr != m->analysis_buffer + ANALYSIS_BUFFER_SIZE)
{
for (int i = 0; i < CBOX_BLOCK_SIZE; i++)
{
if (m->wrptr == m->analysis_buffer + ANALYSIS_BUFFER_SIZE)
break;
*m->wrptr++ = inputs[0][i] + inputs[1][i];
}
}
for (int c = 0; c < 2; c++)
{
gboolean first = TRUE;
for (int i = 0; i < MAX_FBR_BANDS; i++)
{
if (!m->params->bands[i].active)
continue;
if (first)
{
cbox_biquadf_process_to(&m->state[i][c], &m->coeffs[i], inputs[c], outputs[c]);
first = FALSE;
}
else
{
cbox_biquadf_process(&m->state[i][c], &m->coeffs[i], outputs[c]);
}
}
if (first)
memcpy(outputs[c], inputs[c], sizeof(float) * CBOX_BLOCK_SIZE);
}
}
MODULE_SIMPLE_DESTROY_FUNCTION(feedback_reducer)
MODULE_CREATE_FUNCTION(feedback_reducer)
{
static int inited = 0;
if (!inited)
{
for (int i = 0; i < ANALYSIS_BUFFER_SIZE; i++)
{
euler_table[i] = cos(i * 2 * M_PI / ANALYSIS_BUFFER_SIZE) + I * sin(i * 2 * M_PI / ANALYSIS_BUFFER_SIZE);
int ni = 0;
for (int j = 0; j < ANALYSIS_BUFFER_BITS; j++)
{
if (i & (1 << (ANALYSIS_BUFFER_BITS - 1 - j)))
ni = ni | (1 << j);
}
map_table[i] = ni;
von_hann_window_transposed[i] = 0.5 * (1 - cos (ni * 2 * M_PI / (ANALYSIS_BUFFER_SIZE - 1)));
}
inited = 1;
}
struct feedback_reducer_module *m = malloc(sizeof(struct feedback_reducer_module));
CALL_MODULE_INIT(m, 2, 2, feedback_reducer);
m->module.process_event = feedback_reducer_process_event;
m->module.process_block = feedback_reducer_process_block;
struct feedback_reducer_params *p = malloc(sizeof(struct feedback_reducer_params));
m->params = p;
m->old_params = NULL;
m->analysed = 0;
m->wrptr = NULL;
for (int b = 0; b < MAX_FBR_BANDS; b++)
{
p->bands[b].active = cbox_eq_get_band_param(cfg_section, b, "active", 0) > 0;
p->bands[b].center = cbox_eq_get_band_param(cfg_section, b, "center", 50 * pow(2.0, b / 2.0));
p->bands[b].q = cbox_eq_get_band_param(cfg_section, b, "q", 0.707 * 2);
p->bands[b].gain = cbox_eq_get_band_param_db(cfg_section, b, "gain", 0);
}
redo_filters(m);
cbox_eq_reset_bands(m->state, MAX_FBR_BANDS);
return &m->module;
}
struct cbox_module_keyrange_metadata feedback_reducer_keyranges[] = {
};
struct cbox_module_livecontroller_metadata feedback_reducer_controllers[] = {
};
DEFINE_MODULE(feedback_reducer, 2, 2)