QML is a Python2/3-compatible toolkit for representation learning of properties of molecules and solids.
- Anders S. Christensen (University of Basel)
- Lars A. Bratholm (University of Bristol)
- Silvia Amabilino (University of Bristol)
- Jimmy C. Kromann (University of Basel)
- Felix A. Faber (University of Basel)
- Bing Huang (University of Basel)
- David R. Glowacki (University of Bristol)
- Alexandre Tkatchenko (University of Luxembourg)
- Klaus-Robert Müller (Technische Universitat Berlin/Korea University)
- O. Anatole von Lilienfeld (University of Basel)
Until the preprint is available from arXiv, please cite this GitHub repository as:
AS Christensen, LA Bratholm, S Amabilino, JC Kromann, FA Faber, B Huang, GR Glowacki, A Tkatchenko, K.R. Muller, OA von Lilienfeld (2018) "QML: A Python Toolkit for Quantum Machine Learning" https://github.com/qmlcode/qml
Documentation and installation instruction is found at: http://www.qmlcode.org/
QML is freely available under the terms of the MIT license.