forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmod.rs
151 lines (131 loc) · 5.77 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
//! Helper routines for higher-ranked things. See the `doc` module at
//! the end of the file for details.
use super::combine::CombineFields;
use super::{HigherRankedType, InferCtxt};
use crate::infer::CombinedSnapshot;
use rustc_middle::ty::relate::{Relate, RelateResult, TypeRelation};
use rustc_middle::ty::{self, Binder, TypeFoldable};
impl<'a, 'tcx> CombineFields<'a, 'tcx> {
#[instrument(skip(self), level = "debug")]
pub fn higher_ranked_sub<T>(
&mut self,
a: Binder<'tcx, T>,
b: Binder<'tcx, T>,
a_is_expected: bool,
) -> RelateResult<'tcx, Binder<'tcx, T>>
where
T: Relate<'tcx>,
{
// Rather than checking the subtype relationship between `a` and `b`
// as-is, we need to do some extra work here in order to make sure
// that function subtyping works correctly with respect to regions
//
// Note: this is a subtle algorithm. For a full explanation, please see
// the rustc dev guide:
// <https://rustc-dev-guide.rust-lang.org/borrow_check/region_inference/placeholders_and_universes.html>
let span = self.trace.cause.span;
self.infcx.commit_if_ok(|_| {
// First, we instantiate each bound region in the supertype with a
// fresh placeholder region.
let b_prime = self.infcx.replace_bound_vars_with_placeholders(b);
// Next, we instantiate each bound region in the subtype
// with a fresh region variable. These region variables --
// but no other pre-existing region variables -- can name
// the placeholders.
let (a_prime, _) =
self.infcx.replace_bound_vars_with_fresh_vars(span, HigherRankedType, a);
debug!("a_prime={:?}", a_prime);
debug!("b_prime={:?}", b_prime);
// Compare types now that bound regions have been replaced.
let result = self.sub(a_is_expected).relate(a_prime, b_prime)?;
debug!("higher_ranked_sub: OK result={:?}", result);
// We related `a_prime` and `b_prime`, which just had any bound vars
// replaced with placeholders or infer vars, respectively. Relating
// them should not introduce new bound vars.
Ok(ty::Binder::dummy(result))
})
}
}
impl<'a, 'tcx> InferCtxt<'a, 'tcx> {
/// Replaces all regions (resp. types) bound by `binder` with placeholder
/// regions (resp. types) and return a map indicating which bound-region
/// placeholder region. This is the first step of checking subtyping
/// when higher-ranked things are involved.
///
/// **Important:** You have to be careful to not leak these placeholders,
/// for more information about how placeholders and HRTBs work, see
/// the [rustc dev guide].
///
/// [rustc dev guide]: https://rustc-dev-guide.rust-lang.org/traits/hrtb.html
pub fn replace_bound_vars_with_placeholders<T>(&self, binder: ty::Binder<'tcx, T>) -> T
where
T: TypeFoldable<'tcx>,
{
// Figure out what the next universe will be, but don't actually create
// it until after we've done the substitution (in particular there may
// be no bound variables). This is a performance optimization, since the
// leak check for example can be skipped if no new universes are created
// (i.e., if there are no placeholders).
let next_universe = self.universe().next_universe();
let fld_r = |br: ty::BoundRegion| {
self.tcx.mk_region(ty::RePlaceholder(ty::PlaceholderRegion {
universe: next_universe,
name: br.kind,
}))
};
let fld_t = |bound_ty: ty::BoundTy| {
self.tcx.mk_ty(ty::Placeholder(ty::PlaceholderType {
universe: next_universe,
name: bound_ty.var,
}))
};
let fld_c = |bound_var: ty::BoundVar, ty| {
self.tcx.mk_const(ty::ConstS {
val: ty::ConstKind::Placeholder(ty::PlaceholderConst {
universe: next_universe,
name: ty::BoundConst { var: bound_var, ty },
}),
ty,
})
};
let (result, map) = self.tcx.replace_bound_vars(binder, fld_r, fld_t, fld_c);
// If there were higher-ranked regions to replace, then actually create
// the next universe (this avoids needlessly creating universes).
if !map.is_empty() {
let n_u = self.create_next_universe();
assert_eq!(n_u, next_universe);
}
debug!(
"replace_bound_vars_with_placeholders(\
next_universe={:?}, \
result={:?}, \
map={:?})",
next_universe, result, map,
);
result
}
/// See [RegionConstraintCollector::leak_check][1].
///
/// [1]: crate::infer::region_constraints::RegionConstraintCollector::leak_check
pub fn leak_check(
&self,
overly_polymorphic: bool,
snapshot: &CombinedSnapshot<'_, 'tcx>,
) -> RelateResult<'tcx, ()> {
// If the user gave `-Zno-leak-check`, or we have been
// configured to skip the leak check, then skip the leak check
// completely. The leak check is deprecated. Any legitimate
// subtyping errors that it would have caught will now be
// caught later on, during region checking. However, we
// continue to use it for a transition period.
if self.tcx.sess.opts.debugging_opts.no_leak_check || self.skip_leak_check.get() {
return Ok(());
}
self.inner.borrow_mut().unwrap_region_constraints().leak_check(
self.tcx,
overly_polymorphic,
self.universe(),
snapshot,
)
}
}