-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathcreate-custom-coco-dataset.py
executable file
·109 lines (88 loc) · 3.64 KB
/
create-custom-coco-dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
import glob
from src.create_annotations import *
# Label ids of the dataset
category_ids = {
'master_chef_can':1,
'cracker_box':2,
'sugar_box':3,
'tomato_soup_can':4,
'mustard_bottle':5,
'tuna_fish_can':6,
'pudding_box':7,
'gelatin_box':8,
'potted_meat_can':9,
'banana':10,
'pitcher_base':11,
'bleach_cleanser':12,
'bowl':13,
'mug':14,
'power_drill':15,
'wood_block':16,
'scissors':17,
'large_marker':18,
'large_clamp':19,
'extra_large_clamp':20,
'foam_brick':21
}
# Define which colors match which categories in the images
# category_colors = {
# "(0, 0, 0)": 0, # Outlier
# "(255, 0, 0)": 1, # Window
# "(255, 255, 0)": 2, # Wall
# "(128, 0, 255)": 3, # Balcony
# "(255, 128, 0)": 4, # Door
# "(0, 0, 255)": 5, # Roof
# "(128, 255, 255)": 6, # Sky
# "(0, 255, 0)": 7, # Shop
# "(128, 128, 128)": 8 # Chimney
# }
# Define the ids that are a multiplolygon. In our case: wall, roof and sky
multipolygon_ids = [2, 5, 6]
# Get "images" and "annotations" info
def images_annotations_info(maskpath):
# This id will be automatically increased as we go
annotation_id = 0
image_id = 0
annotations = []
images = []
for mask_image in glob.glob(maskpath + "*-label.png"):
# The mask image is *.png but the original image is *.jpg.
# We make a reference to the original file in the COCO JSON file
original_file_name = os.path.basename(mask_image).split("-")[0] + "-color.png"
# Open the image and (to be sure) we convert it to RGB
mask_image_open = Image.open(mask_image)
w, h = mask_image_open.size
# "images" info
image = create_image_annotation(original_file_name, w, h, image_id)
images.append(image)
sub_masks = create_sub_masks(mask_image_open, w, h)
for category_id, sub_mask in sub_masks.items():
# "annotations" info
polygons, segmentations = create_sub_mask_annotation(sub_mask)
# Check if we have classes that are a multipolygon
if True: #category_id in multipolygon_ids:
# Combine the polygons to calculate the bounding box and area
multi_poly = MultiPolygon(polygons)
annotation = create_annotation_format(multi_poly, segmentations, image_id, int(category_id), annotation_id)
annotations.append(annotation)
annotation_id += 1
# else:
# for i in range(len(polygons)):
# # Cleaner to recalculate this variable
# segmentation = [np.array(polygons[i].exterior.coords).ravel().tolist()]
# annotation = create_annotation_format(polygons[i], segmentation, image_id, category_id, annotation_id)
# annotations.append(annotation)
# annotation_id += 1
image_id += 1
return images, annotations, annotation_id
if __name__ == "__main__":
# Get the standard COCO JSON format
coco_format = get_coco_json_format()
mask_path = "dataset/0000/" #YCB-Video Path
# Create category section
coco_format["categories"] = create_category_annotation(category_ids)
# Create images and annotations sections
coco_format["images"], coco_format["annotations"], annotation_cnt = images_annotations_info(mask_path)
with open("output/{}.json".format('train'),"w") as outfile:
json.dump(coco_format, outfile)
print("Created %d annotations for images in folder: %s" % (annotation_cnt, mask_path))