forked from rust-lang/rust
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmod.rs
1222 lines (1067 loc) · 43.7 KB
/
mod.rs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
//! Trait Resolution. See the [rustc guide] for more information on how this works.
//!
//! [rustc guide]: https://rust-lang.github.io/rustc-guide/traits/resolution.html
#[allow(dead_code)]
pub mod auto_trait;
mod chalk_fulfill;
mod coherence;
pub mod error_reporting;
mod engine;
mod fulfill;
mod project;
mod object_safety;
mod on_unimplemented;
mod select;
mod specialize;
mod structural_impls;
pub mod codegen;
mod util;
pub mod query;
use chalk_engine;
use crate::hir;
use crate::hir::def_id::DefId;
use crate::infer::{InferCtxt, SuppressRegionErrors};
use crate::infer::outlives::env::OutlivesEnvironment;
use crate::middle::region;
use crate::mir::interpret::ErrorHandled;
use rustc_macros::HashStable;
use syntax::ast;
use syntax_pos::{Span, DUMMY_SP};
use crate::ty::subst::{InternalSubsts, SubstsRef};
use crate::ty::{self, AdtKind, List, Ty, TyCtxt, GenericParamDefKind, ToPredicate};
use crate::ty::error::{ExpectedFound, TypeError};
use crate::ty::fold::{TypeFolder, TypeFoldable, TypeVisitor};
use crate::util::common::ErrorReported;
use std::fmt::Debug;
use std::rc::Rc;
pub use self::SelectionError::*;
pub use self::FulfillmentErrorCode::*;
pub use self::Vtable::*;
pub use self::ObligationCauseCode::*;
pub use self::coherence::{add_placeholder_note, orphan_check, overlapping_impls};
pub use self::coherence::{OrphanCheckErr, OverlapResult};
pub use self::fulfill::{FulfillmentContext, PendingPredicateObligation};
pub use self::project::MismatchedProjectionTypes;
pub use self::project::{normalize, normalize_projection_type, poly_project_and_unify_type};
pub use self::project::{ProjectionCache, ProjectionCacheSnapshot, Reveal, Normalized};
pub use self::object_safety::ObjectSafetyViolation;
pub use self::object_safety::MethodViolationCode;
pub use self::on_unimplemented::{OnUnimplementedDirective, OnUnimplementedNote};
pub use self::select::{EvaluationCache, SelectionContext, SelectionCache};
pub use self::select::{EvaluationResult, IntercrateAmbiguityCause, OverflowError};
pub use self::specialize::{OverlapError, specialization_graph, translate_substs};
pub use self::specialize::find_associated_item;
pub use self::specialize::specialization_graph::FutureCompatOverlapError;
pub use self::specialize::specialization_graph::FutureCompatOverlapErrorKind;
pub use self::engine::{TraitEngine, TraitEngineExt};
pub use self::util::{elaborate_predicates, elaborate_trait_ref, elaborate_trait_refs};
pub use self::util::{
supertraits, supertrait_def_ids, transitive_bounds, Supertraits, SupertraitDefIds,
};
pub use self::util::{expand_trait_aliases, TraitAliasExpander};
pub use self::chalk_fulfill::{
CanonicalGoal as ChalkCanonicalGoal,
FulfillmentContext as ChalkFulfillmentContext
};
pub use self::ObligationCauseCode::*;
pub use self::FulfillmentErrorCode::*;
pub use self::SelectionError::*;
pub use self::Vtable::*;
/// Whether to enable bug compatibility with issue #43355.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum IntercrateMode {
Issue43355,
Fixed
}
/// The mode that trait queries run in.
#[derive(Copy, Clone, PartialEq, Eq, Debug)]
pub enum TraitQueryMode {
// Standard/un-canonicalized queries get accurate
// spans etc. passed in and hence can do reasonable
// error reporting on their own.
Standard,
// Canonicalized queries get dummy spans and hence
// must generally propagate errors to
// pre-canonicalization callsites.
Canonical,
}
/// An `Obligation` represents some trait reference (e.g., `int: Eq`) for
/// which the vtable must be found. The process of finding a vtable is
/// called "resolving" the `Obligation`. This process consists of
/// either identifying an `impl` (e.g., `impl Eq for int`) that
/// provides the required vtable, or else finding a bound that is in
/// scope. The eventual result is usually a `Selection` (defined below).
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct Obligation<'tcx, T> {
/// The reason we have to prove this thing.
pub cause: ObligationCause<'tcx>,
/// The environment in which we should prove this thing.
pub param_env: ty::ParamEnv<'tcx>,
/// The thing we are trying to prove.
pub predicate: T,
/// If we started proving this as a result of trying to prove
/// something else, track the total depth to ensure termination.
/// If this goes over a certain threshold, we abort compilation --
/// in such cases, we can not say whether or not the predicate
/// holds for certain. Stupid halting problem; such a drag.
pub recursion_depth: usize,
}
pub type PredicateObligation<'tcx> = Obligation<'tcx, ty::Predicate<'tcx>>;
pub type TraitObligation<'tcx> = Obligation<'tcx, ty::PolyTraitPredicate<'tcx>>;
/// The reason why we incurred this obligation; used for error reporting.
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct ObligationCause<'tcx> {
pub span: Span,
/// The ID of the fn body that triggered this obligation. This is
/// used for region obligations to determine the precise
/// environment in which the region obligation should be evaluated
/// (in particular, closures can add new assumptions). See the
/// field `region_obligations` of the `FulfillmentContext` for more
/// information.
pub body_id: hir::HirId,
pub code: ObligationCauseCode<'tcx>
}
impl<'tcx> ObligationCause<'tcx> {
pub fn span(&self, tcx: TyCtxt<'tcx>) -> Span {
match self.code {
ObligationCauseCode::CompareImplMethodObligation { .. } |
ObligationCauseCode::MainFunctionType |
ObligationCauseCode::StartFunctionType => {
tcx.sess.source_map().def_span(self.span)
}
ObligationCauseCode::MatchExpressionArm { arm_span, .. } => arm_span,
_ => self.span,
}
}
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub enum ObligationCauseCode<'tcx> {
/// Not well classified or should be obvious from the span.
MiscObligation,
/// A slice or array is WF only if `T: Sized`.
SliceOrArrayElem,
/// A tuple is WF only if its middle elements are `Sized`.
TupleElem,
/// This is the trait reference from the given projection.
ProjectionWf(ty::ProjectionTy<'tcx>),
/// In an impl of trait `X` for type `Y`, type `Y` must
/// also implement all supertraits of `X`.
ItemObligation(DefId),
/// A type like `&'a T` is WF only if `T: 'a`.
ReferenceOutlivesReferent(Ty<'tcx>),
/// A type like `Box<Foo<'a> + 'b>` is WF only if `'b: 'a`.
ObjectTypeBound(Ty<'tcx>, ty::Region<'tcx>),
/// Obligation incurred due to an object cast.
ObjectCastObligation(/* Object type */ Ty<'tcx>),
// Various cases where expressions must be sized/copy/etc:
/// L = X implies that L is Sized
AssignmentLhsSized,
/// (x1, .., xn) must be Sized
TupleInitializerSized,
/// S { ... } must be Sized
StructInitializerSized,
/// Type of each variable must be Sized
VariableType(hir::HirId),
/// Argument type must be Sized
SizedArgumentType,
/// Return type must be Sized
SizedReturnType,
/// Yield type must be Sized
SizedYieldType,
/// [T,..n] --> T must be Copy
RepeatVec,
/// Types of fields (other than the last, except for packed structs) in a struct must be sized.
FieldSized { adt_kind: AdtKind, last: bool },
/// Constant expressions must be sized.
ConstSized,
/// static items must have `Sync` type
SharedStatic,
BuiltinDerivedObligation(DerivedObligationCause<'tcx>),
ImplDerivedObligation(DerivedObligationCause<'tcx>),
/// error derived when matching traits/impls; see ObligationCause for more details
CompareImplMethodObligation {
item_name: ast::Name,
impl_item_def_id: DefId,
trait_item_def_id: DefId,
},
/// Checking that this expression can be assigned where it needs to be
// FIXME(eddyb) #11161 is the original Expr required?
ExprAssignable,
/// Computing common supertype in the arms of a match expression
MatchExpressionArm {
arm_span: Span,
source: hir::MatchSource,
prior_arms: Vec<Span>,
last_ty: Ty<'tcx>,
discrim_hir_id: hir::HirId,
},
/// Computing common supertype in the pattern guard for the arms of a match expression
MatchExpressionArmPattern { span: Span, ty: Ty<'tcx> },
/// Computing common supertype in an if expression
IfExpression {
then: Span,
outer: Option<Span>,
semicolon: Option<Span>,
},
/// Computing common supertype of an if expression with no else counter-part
IfExpressionWithNoElse,
/// `main` has wrong type
MainFunctionType,
/// `start` has wrong type
StartFunctionType,
/// intrinsic has wrong type
IntrinsicType,
/// method receiver
MethodReceiver,
/// `return` with no expression
ReturnNoExpression,
/// `return` with an expression
ReturnType(hir::HirId),
/// Block implicit return
BlockTailExpression(hir::HirId),
/// #[feature(trivial_bounds)] is not enabled
TrivialBound,
}
#[derive(Clone, Debug, PartialEq, Eq, Hash)]
pub struct DerivedObligationCause<'tcx> {
/// The trait reference of the parent obligation that led to the
/// current obligation. Note that only trait obligations lead to
/// derived obligations, so we just store the trait reference here
/// directly.
parent_trait_ref: ty::PolyTraitRef<'tcx>,
/// The parent trait had this cause.
parent_code: Rc<ObligationCauseCode<'tcx>>
}
pub type Obligations<'tcx, O> = Vec<Obligation<'tcx, O>>;
pub type PredicateObligations<'tcx> = Vec<PredicateObligation<'tcx>>;
pub type TraitObligations<'tcx> = Vec<TraitObligation<'tcx>>;
/// The following types:
/// * `WhereClause`,
/// * `WellFormed`,
/// * `FromEnv`,
/// * `DomainGoal`,
/// * `Goal`,
/// * `Clause`,
/// * `Environment`,
/// * `InEnvironment`,
/// are used for representing the trait system in the form of
/// logic programming clauses. They are part of the interface
/// for the chalk SLG solver.
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable)]
pub enum WhereClause<'tcx> {
Implemented(ty::TraitPredicate<'tcx>),
ProjectionEq(ty::ProjectionPredicate<'tcx>),
RegionOutlives(ty::RegionOutlivesPredicate<'tcx>),
TypeOutlives(ty::TypeOutlivesPredicate<'tcx>),
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable)]
pub enum WellFormed<'tcx> {
Trait(ty::TraitPredicate<'tcx>),
Ty(Ty<'tcx>),
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable)]
pub enum FromEnv<'tcx> {
Trait(ty::TraitPredicate<'tcx>),
Ty(Ty<'tcx>),
}
#[derive(Clone, Copy, PartialEq, Eq, Hash, Debug, HashStable)]
pub enum DomainGoal<'tcx> {
Holds(WhereClause<'tcx>),
WellFormed(WellFormed<'tcx>),
FromEnv(FromEnv<'tcx>),
Normalize(ty::ProjectionPredicate<'tcx>),
}
pub type PolyDomainGoal<'tcx> = ty::Binder<DomainGoal<'tcx>>;
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
pub enum QuantifierKind {
Universal,
Existential,
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
pub enum GoalKind<'tcx> {
Implies(Clauses<'tcx>, Goal<'tcx>),
And(Goal<'tcx>, Goal<'tcx>),
Not(Goal<'tcx>),
DomainGoal(DomainGoal<'tcx>),
Quantified(QuantifierKind, ty::Binder<Goal<'tcx>>),
Subtype(Ty<'tcx>, Ty<'tcx>),
CannotProve,
}
pub type Goal<'tcx> = &'tcx GoalKind<'tcx>;
pub type Goals<'tcx> = &'tcx List<Goal<'tcx>>;
impl<'tcx> DomainGoal<'tcx> {
pub fn into_goal(self) -> GoalKind<'tcx> {
GoalKind::DomainGoal(self)
}
pub fn into_program_clause(self) -> ProgramClause<'tcx> {
ProgramClause {
goal: self,
hypotheses: ty::List::empty(),
category: ProgramClauseCategory::Other,
}
}
}
impl<'tcx> GoalKind<'tcx> {
pub fn from_poly_domain_goal(
domain_goal: PolyDomainGoal<'tcx>,
tcx: TyCtxt<'tcx>,
) -> GoalKind<'tcx> {
match domain_goal.no_bound_vars() {
Some(p) => p.into_goal(),
None => GoalKind::Quantified(
QuantifierKind::Universal,
domain_goal.map_bound(|p| tcx.mk_goal(p.into_goal()))
),
}
}
}
/// This matches the definition from Page 7 of "A Proof Procedure for the Logic of Hereditary
/// Harrop Formulas".
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
pub enum Clause<'tcx> {
Implies(ProgramClause<'tcx>),
ForAll(ty::Binder<ProgramClause<'tcx>>),
}
impl Clause<'tcx> {
pub fn category(self) -> ProgramClauseCategory {
match self {
Clause::Implies(clause) => clause.category,
Clause::ForAll(clause) => clause.skip_binder().category,
}
}
}
/// Multiple clauses.
pub type Clauses<'tcx> = &'tcx List<Clause<'tcx>>;
/// A "program clause" has the form `D :- G1, ..., Gn`. It is saying
/// that the domain goal `D` is true if `G1...Gn` are provable. This
/// is equivalent to the implication `G1..Gn => D`; we usually write
/// it with the reverse implication operator `:-` to emphasize the way
/// that programs are actually solved (via backchaining, which starts
/// with the goal to solve and proceeds from there).
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
pub struct ProgramClause<'tcx> {
/// This goal will be considered true ...
pub goal: DomainGoal<'tcx>,
/// ... if we can prove these hypotheses (there may be no hypotheses at all):
pub hypotheses: Goals<'tcx>,
/// Useful for filtering clauses.
pub category: ProgramClauseCategory,
}
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
pub enum ProgramClauseCategory {
ImpliedBound,
WellFormed,
Other,
}
/// A set of clauses that we assume to be true.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
pub struct Environment<'tcx> {
pub clauses: Clauses<'tcx>,
}
impl Environment<'tcx> {
pub fn with<G>(self, goal: G) -> InEnvironment<'tcx, G> {
InEnvironment {
environment: self,
goal,
}
}
}
/// Something (usually a goal), along with an environment.
#[derive(Copy, Clone, PartialEq, Eq, Hash, Debug, HashStable)]
pub struct InEnvironment<'tcx, G> {
pub environment: Environment<'tcx>,
pub goal: G,
}
pub type Selection<'tcx> = Vtable<'tcx, PredicateObligation<'tcx>>;
#[derive(Clone,Debug)]
pub enum SelectionError<'tcx> {
Unimplemented,
OutputTypeParameterMismatch(ty::PolyTraitRef<'tcx>,
ty::PolyTraitRef<'tcx>,
ty::error::TypeError<'tcx>),
TraitNotObjectSafe(DefId),
ConstEvalFailure(ErrorHandled),
Overflow,
}
pub struct FulfillmentError<'tcx> {
pub obligation: PredicateObligation<'tcx>,
pub code: FulfillmentErrorCode<'tcx>
}
#[derive(Clone)]
pub enum FulfillmentErrorCode<'tcx> {
CodeSelectionError(SelectionError<'tcx>),
CodeProjectionError(MismatchedProjectionTypes<'tcx>),
CodeSubtypeError(ExpectedFound<Ty<'tcx>>,
TypeError<'tcx>), // always comes from a SubtypePredicate
CodeAmbiguity,
}
/// When performing resolution, it is typically the case that there
/// can be one of three outcomes:
///
/// - `Ok(Some(r))`: success occurred with result `r`
/// - `Ok(None)`: could not definitely determine anything, usually due
/// to inconclusive type inference.
/// - `Err(e)`: error `e` occurred
pub type SelectionResult<'tcx, T> = Result<Option<T>, SelectionError<'tcx>>;
/// Given the successful resolution of an obligation, the `Vtable`
/// indicates where the vtable comes from. Note that while we call this
/// a "vtable", it does not necessarily indicate dynamic dispatch at
/// runtime. `Vtable` instances just tell the compiler where to find
/// methods, but in generic code those methods are typically statically
/// dispatched -- only when an object is constructed is a `Vtable`
/// instance reified into an actual vtable.
///
/// For example, the vtable may be tied to a specific impl (case A),
/// or it may be relative to some bound that is in scope (case B).
///
/// ```
/// impl<T:Clone> Clone<T> for Option<T> { ... } // Impl_1
/// impl<T:Clone> Clone<T> for Box<T> { ... } // Impl_2
/// impl Clone for int { ... } // Impl_3
///
/// fn foo<T:Clone>(concrete: Option<Box<int>>,
/// param: T,
/// mixed: Option<T>) {
///
/// // Case A: Vtable points at a specific impl. Only possible when
/// // type is concretely known. If the impl itself has bounded
/// // type parameters, Vtable will carry resolutions for those as well:
/// concrete.clone(); // Vtable(Impl_1, [Vtable(Impl_2, [Vtable(Impl_3)])])
///
/// // Case B: Vtable must be provided by caller. This applies when
/// // type is a type parameter.
/// param.clone(); // VtableParam
///
/// // Case C: A mix of cases A and B.
/// mixed.clone(); // Vtable(Impl_1, [VtableParam])
/// }
/// ```
///
/// ### The type parameter `N`
///
/// See explanation on `VtableImplData`.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub enum Vtable<'tcx, N> {
/// Vtable identifying a particular impl.
VtableImpl(VtableImplData<'tcx, N>),
/// Vtable for auto trait implementations.
/// This carries the information and nested obligations with regards
/// to an auto implementation for a trait `Trait`. The nested obligations
/// ensure the trait implementation holds for all the constituent types.
VtableAutoImpl(VtableAutoImplData<N>),
/// Successful resolution to an obligation provided by the caller
/// for some type parameter. The `Vec<N>` represents the
/// obligations incurred from normalizing the where-clause (if
/// any).
VtableParam(Vec<N>),
/// Virtual calls through an object.
VtableObject(VtableObjectData<'tcx, N>),
/// Successful resolution for a builtin trait.
VtableBuiltin(VtableBuiltinData<N>),
/// Vtable automatically generated for a closure. The `DefId` is the ID
/// of the closure expression. This is a `VtableImpl` in spirit, but the
/// impl is generated by the compiler and does not appear in the source.
VtableClosure(VtableClosureData<'tcx, N>),
/// Same as above, but for a function pointer type with the given signature.
VtableFnPointer(VtableFnPointerData<'tcx, N>),
/// Vtable automatically generated for a generator.
VtableGenerator(VtableGeneratorData<'tcx, N>),
/// Vtable for a trait alias.
VtableTraitAlias(VtableTraitAliasData<'tcx, N>),
}
/// Identifies a particular impl in the source, along with a set of
/// substitutions from the impl's type/lifetime parameters. The
/// `nested` vector corresponds to the nested obligations attached to
/// the impl's type parameters.
///
/// The type parameter `N` indicates the type used for "nested
/// obligations" that are required by the impl. During type check, this
/// is `Obligation`, as one might expect. During codegen, however, this
/// is `()`, because codegen only requires a shallow resolution of an
/// impl, and nested obligations are satisfied later.
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub struct VtableImplData<'tcx, N> {
pub impl_def_id: DefId,
pub substs: SubstsRef<'tcx>,
pub nested: Vec<N>
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub struct VtableGeneratorData<'tcx, N> {
pub generator_def_id: DefId,
pub substs: ty::GeneratorSubsts<'tcx>,
/// Nested obligations. This can be non-empty if the generator
/// signature contains associated types.
pub nested: Vec<N>
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub struct VtableClosureData<'tcx, N> {
pub closure_def_id: DefId,
pub substs: ty::ClosureSubsts<'tcx>,
/// Nested obligations. This can be non-empty if the closure
/// signature contains associated types.
pub nested: Vec<N>
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub struct VtableAutoImplData<N> {
pub trait_def_id: DefId,
pub nested: Vec<N>
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub struct VtableBuiltinData<N> {
pub nested: Vec<N>
}
/// A vtable for some object-safe trait `Foo` automatically derived
/// for the object type `Foo`.
#[derive(PartialEq, Eq, Clone, RustcEncodable, RustcDecodable, HashStable)]
pub struct VtableObjectData<'tcx, N> {
/// `Foo` upcast to the obligation trait. This will be some supertrait of `Foo`.
pub upcast_trait_ref: ty::PolyTraitRef<'tcx>,
/// The vtable is formed by concatenating together the method lists of
/// the base object trait and all supertraits; this is the start of
/// `upcast_trait_ref`'s methods in that vtable.
pub vtable_base: usize,
pub nested: Vec<N>,
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub struct VtableFnPointerData<'tcx, N> {
pub fn_ty: Ty<'tcx>,
pub nested: Vec<N>
}
#[derive(Clone, PartialEq, Eq, RustcEncodable, RustcDecodable, HashStable)]
pub struct VtableTraitAliasData<'tcx, N> {
pub alias_def_id: DefId,
pub substs: SubstsRef<'tcx>,
pub nested: Vec<N>,
}
/// Creates predicate obligations from the generic bounds.
pub fn predicates_for_generics<'tcx>(cause: ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
generic_bounds: &ty::InstantiatedPredicates<'tcx>)
-> PredicateObligations<'tcx>
{
util::predicates_for_generics(cause, 0, param_env, generic_bounds)
}
/// Determines whether the type `ty` is known to meet `bound` and
/// returns true if so. Returns false if `ty` either does not meet
/// `bound` or is not known to meet bound (note that this is
/// conservative towards *no impl*, which is the opposite of the
/// `evaluate` methods).
pub fn type_known_to_meet_bound_modulo_regions<'a, 'tcx>(
infcx: &InferCtxt<'a, 'tcx>,
param_env: ty::ParamEnv<'tcx>,
ty: Ty<'tcx>,
def_id: DefId,
span: Span,
) -> bool {
debug!("type_known_to_meet_bound_modulo_regions(ty={:?}, bound={:?})",
ty,
infcx.tcx.def_path_str(def_id));
let trait_ref = ty::TraitRef {
def_id,
substs: infcx.tcx.mk_substs_trait(ty, &[]),
};
let obligation = Obligation {
param_env,
cause: ObligationCause::misc(span, hir::DUMMY_HIR_ID),
recursion_depth: 0,
predicate: trait_ref.to_predicate(),
};
let result = infcx.predicate_must_hold_modulo_regions(&obligation);
debug!("type_known_to_meet_ty={:?} bound={} => {:?}",
ty, infcx.tcx.def_path_str(def_id), result);
if result && (ty.has_infer_types() || ty.has_closure_types()) {
// Because of inference "guessing", selection can sometimes claim
// to succeed while the success requires a guess. To ensure
// this function's result remains infallible, we must confirm
// that guess. While imperfect, I believe this is sound.
// The handling of regions in this area of the code is terrible,
// see issue #29149. We should be able to improve on this with
// NLL.
let mut fulfill_cx = FulfillmentContext::new_ignoring_regions();
// We can use a dummy node-id here because we won't pay any mind
// to region obligations that arise (there shouldn't really be any
// anyhow).
let cause = ObligationCause::misc(span, hir::DUMMY_HIR_ID);
fulfill_cx.register_bound(infcx, param_env, ty, def_id, cause);
// Note: we only assume something is `Copy` if we can
// *definitively* show that it implements `Copy`. Otherwise,
// assume it is move; linear is always ok.
match fulfill_cx.select_all_or_error(infcx) {
Ok(()) => {
debug!("type_known_to_meet_bound_modulo_regions: ty={:?} bound={} success",
ty,
infcx.tcx.def_path_str(def_id));
true
}
Err(e) => {
debug!("type_known_to_meet_bound_modulo_regions: ty={:?} bound={} errors={:?}",
ty,
infcx.tcx.def_path_str(def_id),
e);
false
}
}
} else {
result
}
}
fn do_normalize_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
region_context: DefId,
cause: ObligationCause<'tcx>,
elaborated_env: ty::ParamEnv<'tcx>,
predicates: Vec<ty::Predicate<'tcx>>,
) -> Result<Vec<ty::Predicate<'tcx>>, ErrorReported> {
debug!(
"do_normalize_predicates(predicates={:?}, region_context={:?}, cause={:?})",
predicates,
region_context,
cause,
);
let span = cause.span;
tcx.infer_ctxt().enter(|infcx| {
// FIXME. We should really... do something with these region
// obligations. But this call just continues the older
// behavior (i.e., doesn't cause any new bugs), and it would
// take some further refactoring to actually solve them. In
// particular, we would have to handle implied bounds
// properly, and that code is currently largely confined to
// regionck (though I made some efforts to extract it
// out). -nmatsakis
//
// @arielby: In any case, these obligations are checked
// by wfcheck anyway, so I'm not sure we have to check
// them here too, and we will remove this function when
// we move over to lazy normalization *anyway*.
let fulfill_cx = FulfillmentContext::new_ignoring_regions();
let predicates = match fully_normalize(
&infcx,
fulfill_cx,
cause,
elaborated_env,
&predicates,
) {
Ok(predicates) => predicates,
Err(errors) => {
infcx.report_fulfillment_errors(&errors, None, false);
return Err(ErrorReported)
}
};
debug!("do_normalize_predictes: normalized predicates = {:?}", predicates);
let region_scope_tree = region::ScopeTree::default();
// We can use the `elaborated_env` here; the region code only
// cares about declarations like `'a: 'b`.
let outlives_env = OutlivesEnvironment::new(elaborated_env);
infcx.resolve_regions_and_report_errors(
region_context,
®ion_scope_tree,
&outlives_env,
SuppressRegionErrors::default(),
);
let predicates = match infcx.fully_resolve(&predicates) {
Ok(predicates) => predicates,
Err(fixup_err) => {
// If we encounter a fixup error, it means that some type
// variable wound up unconstrained. I actually don't know
// if this can happen, and I certainly don't expect it to
// happen often, but if it did happen it probably
// represents a legitimate failure due to some kind of
// unconstrained variable, and it seems better not to ICE,
// all things considered.
tcx.sess.span_err(span, &fixup_err.to_string());
return Err(ErrorReported)
}
};
match tcx.lift_to_global(&predicates) {
Some(predicates) => Ok(predicates),
None => {
// FIXME: shouldn't we, you know, actually report an error here? or an ICE?
Err(ErrorReported)
}
}
})
}
// FIXME: this is gonna need to be removed ...
/// Normalizes the parameter environment, reporting errors if they occur.
pub fn normalize_param_env_or_error<'tcx>(
tcx: TyCtxt<'tcx>,
region_context: DefId,
unnormalized_env: ty::ParamEnv<'tcx>,
cause: ObligationCause<'tcx>,
) -> ty::ParamEnv<'tcx> {
// I'm not wild about reporting errors here; I'd prefer to
// have the errors get reported at a defined place (e.g.,
// during typeck). Instead I have all parameter
// environments, in effect, going through this function
// and hence potentially reporting errors. This ensures of
// course that we never forget to normalize (the
// alternative seemed like it would involve a lot of
// manual invocations of this fn -- and then we'd have to
// deal with the errors at each of those sites).
//
// In any case, in practice, typeck constructs all the
// parameter environments once for every fn as it goes,
// and errors will get reported then; so after typeck we
// can be sure that no errors should occur.
debug!("normalize_param_env_or_error(region_context={:?}, unnormalized_env={:?}, cause={:?})",
region_context, unnormalized_env, cause);
let mut predicates: Vec<_> =
util::elaborate_predicates(tcx, unnormalized_env.caller_bounds.to_vec())
.collect();
debug!("normalize_param_env_or_error: elaborated-predicates={:?}",
predicates);
let elaborated_env = ty::ParamEnv::new(
tcx.intern_predicates(&predicates),
unnormalized_env.reveal,
unnormalized_env.def_id
);
// HACK: we are trying to normalize the param-env inside *itself*. The problem is that
// normalization expects its param-env to be already normalized, which means we have
// a circularity.
//
// The way we handle this is by normalizing the param-env inside an unnormalized version
// of the param-env, which means that if the param-env contains unnormalized projections,
// we'll have some normalization failures. This is unfortunate.
//
// Lazy normalization would basically handle this by treating just the
// normalizing-a-trait-ref-requires-itself cycles as evaluation failures.
//
// Inferred outlives bounds can create a lot of `TypeOutlives` predicates for associated
// types, so to make the situation less bad, we normalize all the predicates *but*
// the `TypeOutlives` predicates first inside the unnormalized parameter environment, and
// then we normalize the `TypeOutlives` bounds inside the normalized parameter environment.
//
// This works fairly well because trait matching does not actually care about param-env
// TypeOutlives predicates - these are normally used by regionck.
let outlives_predicates: Vec<_> = predicates.drain_filter(|predicate| {
match predicate {
ty::Predicate::TypeOutlives(..) => true,
_ => false
}
}).collect();
debug!("normalize_param_env_or_error: predicates=(non-outlives={:?}, outlives={:?})",
predicates, outlives_predicates);
let non_outlives_predicates =
match do_normalize_predicates(tcx, region_context, cause.clone(),
elaborated_env, predicates) {
Ok(predicates) => predicates,
// An unnormalized env is better than nothing.
Err(ErrorReported) => {
debug!("normalize_param_env_or_error: errored resolving non-outlives predicates");
return elaborated_env
}
};
debug!("normalize_param_env_or_error: non-outlives predicates={:?}", non_outlives_predicates);
// Not sure whether it is better to include the unnormalized TypeOutlives predicates
// here. I believe they should not matter, because we are ignoring TypeOutlives param-env
// predicates here anyway. Keeping them here anyway because it seems safer.
let outlives_env: Vec<_> =
non_outlives_predicates.iter().chain(&outlives_predicates).cloned().collect();
let outlives_env = ty::ParamEnv::new(
tcx.intern_predicates(&outlives_env),
unnormalized_env.reveal,
None
);
let outlives_predicates =
match do_normalize_predicates(tcx, region_context, cause,
outlives_env, outlives_predicates) {
Ok(predicates) => predicates,
// An unnormalized env is better than nothing.
Err(ErrorReported) => {
debug!("normalize_param_env_or_error: errored resolving outlives predicates");
return elaborated_env
}
};
debug!("normalize_param_env_or_error: outlives predicates={:?}", outlives_predicates);
let mut predicates = non_outlives_predicates;
predicates.extend(outlives_predicates);
debug!("normalize_param_env_or_error: final predicates={:?}", predicates);
ty::ParamEnv::new(
tcx.intern_predicates(&predicates),
unnormalized_env.reveal,
unnormalized_env.def_id
)
}
pub fn fully_normalize<'a, 'tcx, T>(
infcx: &InferCtxt<'a, 'tcx>,
mut fulfill_cx: FulfillmentContext<'tcx>,
cause: ObligationCause<'tcx>,
param_env: ty::ParamEnv<'tcx>,
value: &T,
) -> Result<T, Vec<FulfillmentError<'tcx>>>
where
T: TypeFoldable<'tcx>,
{
debug!("fully_normalize_with_fulfillcx(value={:?})", value);
let selcx = &mut SelectionContext::new(infcx);
let Normalized { value: normalized_value, obligations } =
project::normalize(selcx, param_env, cause, value);
debug!("fully_normalize: normalized_value={:?} obligations={:?}",
normalized_value,
obligations);
for obligation in obligations {
fulfill_cx.register_predicate_obligation(selcx.infcx(), obligation);
}
debug!("fully_normalize: select_all_or_error start");
fulfill_cx.select_all_or_error(infcx)?;
debug!("fully_normalize: select_all_or_error complete");
let resolved_value = infcx.resolve_vars_if_possible(&normalized_value);
debug!("fully_normalize: resolved_value={:?}", resolved_value);
Ok(resolved_value)
}
/// Normalizes the predicates and checks whether they hold in an empty
/// environment. If this returns false, then either normalize
/// encountered an error or one of the predicates did not hold. Used
/// when creating vtables to check for unsatisfiable methods.
fn normalize_and_test_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
predicates: Vec<ty::Predicate<'tcx>>,
) -> bool {
debug!("normalize_and_test_predicates(predicates={:?})",
predicates);
let result = tcx.infer_ctxt().enter(|infcx| {
let param_env = ty::ParamEnv::reveal_all();
let mut selcx = SelectionContext::new(&infcx);
let mut fulfill_cx = FulfillmentContext::new();
let cause = ObligationCause::dummy();
let Normalized { value: predicates, obligations } =
normalize(&mut selcx, param_env, cause.clone(), &predicates);
for obligation in obligations {
fulfill_cx.register_predicate_obligation(&infcx, obligation);
}
for predicate in predicates {
let obligation = Obligation::new(cause.clone(), param_env, predicate);
fulfill_cx.register_predicate_obligation(&infcx, obligation);
}
fulfill_cx.select_all_or_error(&infcx).is_ok()
});
debug!("normalize_and_test_predicates(predicates={:?}) = {:?}",
predicates, result);
result
}
fn substitute_normalize_and_test_predicates<'tcx>(
tcx: TyCtxt<'tcx>,
key: (DefId, SubstsRef<'tcx>),
) -> bool {
debug!("substitute_normalize_and_test_predicates(key={:?})",
key);
let predicates = tcx.predicates_of(key.0).instantiate(tcx, key.1).predicates;
let result = normalize_and_test_predicates(tcx, predicates);
debug!("substitute_normalize_and_test_predicates(key={:?}) = {:?}",
key, result);
result
}
/// Given a trait `trait_ref`, iterates the vtable entries
/// that come from `trait_ref`, including its supertraits.
#[inline] // FIXME(#35870): avoid closures being unexported due to `impl Trait`.
fn vtable_methods<'tcx>(
tcx: TyCtxt<'tcx>,
trait_ref: ty::PolyTraitRef<'tcx>,
) -> &'tcx [Option<(DefId, SubstsRef<'tcx>)>] {
debug!("vtable_methods({:?})", trait_ref);
tcx.arena.alloc_from_iter(
supertraits(tcx, trait_ref).flat_map(move |trait_ref| {
let trait_methods = tcx.associated_items(trait_ref.def_id())
.filter(|item| item.kind == ty::AssocKind::Method);
// Now list each method's DefId and InternalSubsts (for within its trait).
// If the method can never be called from this object, produce None.
trait_methods.map(move |trait_method| {